Description: Lemma for 2sqreult . (Contributed by AV, 8-Jun-2023) (Proposed by GL, 8-Jun-2023.)
Ref | Expression | ||
---|---|---|---|
Assertion | 2sqreultlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2sqreulem1 | |
|
2 | oveq1 | |
|
3 | 2 | oveq2d | |
4 | 3 | adantr | |
5 | nn0cn | |
|
6 | 5 | sqcld | |
7 | 2times | |
|
8 | 7 | eqcomd | |
9 | 6 8 | syl | |
10 | 9 | adantl | |
11 | 10 | ad2antrl | |
12 | 4 11 | eqtrd | |
13 | 12 | eqeq1d | |
14 | oveq1 | |
|
15 | 14 | eqeq1d | |
16 | eleq1 | |
|
17 | 15 16 | anbi12d | |
18 | nn0z | |
|
19 | 2nn0 | |
|
20 | zexpcl | |
|
21 | 18 19 20 | sylancl | |
22 | 2mulprm | |
|
23 | 21 22 | syl | |
24 | oveq2 | |
|
25 | 2t1e2 | |
|
26 | 24 25 | eqtrdi | |
27 | 26 | oveq1d | |
28 | 2re | |
|
29 | 4nn | |
|
30 | nnrp | |
|
31 | 29 30 | ax-mp | |
32 | 0le2 | |
|
33 | 2lt4 | |
|
34 | modid | |
|
35 | 28 31 32 33 34 | mp4an | |
36 | 27 35 | eqtrdi | |
37 | 36 | eqeq1d | |
38 | 1ne2 | |
|
39 | eqcom | |
|
40 | eqneqall | |
|
41 | 40 | com12 | |
42 | 39 41 | biimtrid | |
43 | 38 42 | ax-mp | |
44 | 37 43 | syl6bi | |
45 | 23 44 | syl6bi | |
46 | 45 | impcomd | |
47 | 46 | com12 | |
48 | 17 47 | syl6bi | |
49 | 48 | expd | |
50 | 49 | com34 | |
51 | 50 | eqcoms | |
52 | 51 | com14 | |
53 | 52 | imp31 | |
54 | 53 | ad2antrl | |
55 | 13 54 | sylbid | |
56 | 55 | expimpd | |
57 | 2a1 | |
|
58 | 56 57 | pm2.61ine | |
59 | 58 | pm4.71d | |
60 | nn0re | |
|
61 | 60 | adantl | |
62 | nn0re | |
|
63 | ltlen | |
|
64 | 61 62 63 | syl2an | |
65 | 64 | bibi2d | |
66 | 65 | adantr | |
67 | 59 66 | mpbird | |
68 | 67 | ex | |
69 | 68 | pm5.32rd | |
70 | 69 | reubidva | |
71 | 70 | reubidva | |
72 | 1 71 | mpbid | |