Metamath Proof Explorer


Theorem 2sqreultlem

Description: Lemma for 2sqreult . (Contributed by AV, 8-Jun-2023) (Proposed by GL, 8-Jun-2023.)

Ref Expression
Assertion 2sqreultlem PPmod4=1∃!a0∃!b0a<ba2+b2=P

Proof

Step Hyp Ref Expression
1 2sqreulem1 PPmod4=1∃!a0∃!b0aba2+b2=P
2 oveq1 b=ab2=a2
3 2 oveq2d b=aa2+b2=a2+a2
4 3 adantr b=aPPmod4=1a0b0a2+b2=a2+a2
5 nn0cn a0a
6 5 sqcld a0a2
7 2times a22a2=a2+a2
8 7 eqcomd a2a2+a2=2a2
9 6 8 syl a0a2+a2=2a2
10 9 adantl PPmod4=1a0a2+a2=2a2
11 10 ad2antrl b=aPPmod4=1a0b0a2+a2=2a2
12 4 11 eqtrd b=aPPmod4=1a0b0a2+b2=2a2
13 12 eqeq1d b=aPPmod4=1a0b0a2+b2=P2a2=P
14 oveq1 P=2a2Pmod4=2a2mod4
15 14 eqeq1d P=2a2Pmod4=12a2mod4=1
16 eleq1 P=2a2P2a2
17 15 16 anbi12d P=2a2Pmod4=1P2a2mod4=12a2
18 nn0z a0a
19 2nn0 20
20 zexpcl a20a2
21 18 19 20 sylancl a0a2
22 2mulprm a22a2a2=1
23 21 22 syl a02a2a2=1
24 oveq2 a2=12a2=21
25 2t1e2 21=2
26 24 25 eqtrdi a2=12a2=2
27 26 oveq1d a2=12a2mod4=2mod4
28 2re 2
29 4nn 4
30 nnrp 44+
31 29 30 ax-mp 4+
32 0le2 02
33 2lt4 2<4
34 modid 24+022<42mod4=2
35 28 31 32 33 34 mp4an 2mod4=2
36 27 35 eqtrdi a2=12a2mod4=2
37 36 eqeq1d a2=12a2mod4=12=1
38 1ne2 12
39 eqcom 2=11=2
40 eqneqall 1=212abba
41 40 com12 121=2abba
42 39 41 biimtrid 122=1abba
43 38 42 ax-mp 2=1abba
44 37 43 syl6bi a2=12a2mod4=1abba
45 23 44 syl6bi a02a22a2mod4=1abba
46 45 impcomd a02a2mod4=12a2abba
47 46 com12 2a2mod4=12a2a0abba
48 17 47 syl6bi P=2a2Pmod4=1Pa0abba
49 48 expd P=2a2Pmod4=1Pa0abba
50 49 com34 P=2a2Pmod4=1a0Pabba
51 50 eqcoms 2a2=PPmod4=1a0Pabba
52 51 com14 PPmod4=1a02a2=Pabba
53 52 imp31 PPmod4=1a02a2=Pabba
54 53 ad2antrl b=aPPmod4=1a0b02a2=Pabba
55 13 54 sylbid b=aPPmod4=1a0b0a2+b2=Pabba
56 55 expimpd b=aPPmod4=1a0b0a2+b2=Pabba
57 2a1 baPPmod4=1a0b0a2+b2=Pabba
58 56 57 pm2.61ine PPmod4=1a0b0a2+b2=Pabba
59 58 pm4.71d PPmod4=1a0b0a2+b2=Pababba
60 nn0re a0a
61 60 adantl PPmod4=1a0a
62 nn0re b0b
63 ltlen aba<babba
64 61 62 63 syl2an PPmod4=1a0b0a<babba
65 64 bibi2d PPmod4=1a0b0aba<bababba
66 65 adantr PPmod4=1a0b0a2+b2=Paba<bababba
67 59 66 mpbird PPmod4=1a0b0a2+b2=Paba<b
68 67 ex PPmod4=1a0b0a2+b2=Paba<b
69 68 pm5.32rd PPmod4=1a0b0aba2+b2=Pa<ba2+b2=P
70 69 reubidva PPmod4=1a0∃!b0aba2+b2=P∃!b0a<ba2+b2=P
71 70 reubidva PPmod4=1∃!a0∃!b0aba2+b2=P∃!a0∃!b0a<ba2+b2=P
72 1 71 mpbid PPmod4=1∃!a0∃!b0a<ba2+b2=P