Metamath Proof Explorer


Theorem aaliou2

Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Assertion aaliou2 A𝔸kx+pqA=pqxqk<Apq

Proof

Step Hyp Ref Expression
1 elin A𝔸A𝔸A
2 elaa A𝔸AaPoly0𝑝aA=0
3 eldifn aPoly0𝑝¬a0𝑝
4 3 3ad2ant1 aPoly0𝑝aA=0A¬a0𝑝
5 simpr aPoly0𝑝aA=0Aa=×a0a=×a0
6 fveq1 a=×a0aA=×a0A
7 6 adantl aPoly0𝑝aA=0Aa=×a0aA=×a0A
8 simpl2 aPoly0𝑝aA=0Aa=×a0aA=0
9 simpl3 aPoly0𝑝aA=0Aa=×a0A
10 9 recnd aPoly0𝑝aA=0Aa=×a0A
11 fvex a0V
12 11 fvconst2 A×a0A=a0
13 10 12 syl aPoly0𝑝aA=0Aa=×a0×a0A=a0
14 7 8 13 3eqtr3rd aPoly0𝑝aA=0Aa=×a0a0=0
15 14 sneqd aPoly0𝑝aA=0Aa=×a0a0=0
16 15 xpeq2d aPoly0𝑝aA=0Aa=×a0×a0=×0
17 5 16 eqtrd aPoly0𝑝aA=0Aa=×a0a=×0
18 df-0p 0𝑝=×0
19 17 18 eqtr4di aPoly0𝑝aA=0Aa=×a0a=0𝑝
20 velsn a0𝑝a=0𝑝
21 19 20 sylibr aPoly0𝑝aA=0Aa=×a0a0𝑝
22 4 21 mtand aPoly0𝑝aA=0A¬a=×a0
23 eldifi aPoly0𝑝aPoly
24 23 3ad2ant1 aPoly0𝑝aA=0AaPoly
25 0dgrb aPolydega=0a=×a0
26 24 25 syl aPoly0𝑝aA=0Adega=0a=×a0
27 22 26 mtbird aPoly0𝑝aA=0A¬dega=0
28 dgrcl aPolydega0
29 24 28 syl aPoly0𝑝aA=0Adega0
30 elnn0 dega0degadega=0
31 29 30 sylib aPoly0𝑝aA=0Adegadega=0
32 orel2 ¬dega=0degadega=0dega
33 27 31 32 sylc aPoly0𝑝aA=0Adega
34 eqid dega=dega
35 simp3 aPoly0𝑝aA=0AA
36 simp2 aPoly0𝑝aA=0AaA=0
37 34 24 33 35 36 aaliou aPoly0𝑝aA=0Ax+pqA=pqxqdega<Apq
38 oveq2 k=degaqk=qdega
39 38 oveq2d k=degaxqk=xqdega
40 39 breq1d k=degaxqk<Apqxqdega<Apq
41 40 orbi2d k=degaA=pqxqk<ApqA=pqxqdega<Apq
42 41 2ralbidv k=degapqA=pqxqk<ApqpqA=pqxqdega<Apq
43 42 rexbidv k=degax+pqA=pqxqk<Apqx+pqA=pqxqdega<Apq
44 43 rspcev degax+pqA=pqxqdega<Apqkx+pqA=pqxqk<Apq
45 33 37 44 syl2anc aPoly0𝑝aA=0Akx+pqA=pqxqk<Apq
46 45 3exp aPoly0𝑝aA=0Akx+pqA=pqxqk<Apq
47 46 rexlimiv aPoly0𝑝aA=0Akx+pqA=pqxqk<Apq
48 2 47 simplbiim A𝔸Akx+pqA=pqxqk<Apq
49 48 imp A𝔸Akx+pqA=pqxqk<Apq
50 1 49 sylbi A𝔸kx+pqA=pqxqk<Apq