Description: Liouville's approximation theorem for algebraic numbers per se. (Contributed by Stefan O'Rear, 16-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | aaliou2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |
|
2 | elaa | |
|
3 | eldifn | |
|
4 | 3 | 3ad2ant1 | |
5 | simpr | |
|
6 | fveq1 | |
|
7 | 6 | adantl | |
8 | simpl2 | |
|
9 | simpl3 | |
|
10 | 9 | recnd | |
11 | fvex | |
|
12 | 11 | fvconst2 | |
13 | 10 12 | syl | |
14 | 7 8 13 | 3eqtr3rd | |
15 | 14 | sneqd | |
16 | 15 | xpeq2d | |
17 | 5 16 | eqtrd | |
18 | df-0p | |
|
19 | 17 18 | eqtr4di | |
20 | velsn | |
|
21 | 19 20 | sylibr | |
22 | 4 21 | mtand | |
23 | eldifi | |
|
24 | 23 | 3ad2ant1 | |
25 | 0dgrb | |
|
26 | 24 25 | syl | |
27 | 22 26 | mtbird | |
28 | dgrcl | |
|
29 | 24 28 | syl | |
30 | elnn0 | |
|
31 | 29 30 | sylib | |
32 | orel2 | |
|
33 | 27 31 32 | sylc | |
34 | eqid | |
|
35 | simp3 | |
|
36 | simp2 | |
|
37 | 34 24 33 35 36 | aaliou | |
38 | oveq2 | |
|
39 | 38 | oveq2d | |
40 | 39 | breq1d | |
41 | 40 | orbi2d | |
42 | 41 | 2ralbidv | |
43 | 42 | rexbidv | |
44 | 43 | rspcev | |
45 | 33 37 44 | syl2anc | |
46 | 45 | 3exp | |
47 | 46 | rexlimiv | |
48 | 2 47 | simplbiim | |
49 | 48 | imp | |
50 | 1 49 | sylbi | |