Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Liouville's approximation theorem
aaliou3lem7
Next ⟩
aaliou3lem9
Metamath Proof Explorer
Ascii
Unicode
Theorem
aaliou3lem7
Description:
Lemma for
aaliou3
.
(Contributed by
Stefan O'Rear
, 16-Nov-2014)
Ref
Expression
Hypotheses
aaliou3lem.c
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
aaliou3lem.d
⊢
L
=
∑
b
∈
ℕ
F
b
aaliou3lem.e
⊢
H
=
c
∈
ℕ
⟼
∑
b
=
1
c
F
b
Assertion
aaliou3lem7
⊢
A
∈
ℕ
→
H
A
≠
L
∧
L
−
H
A
≤
2
2
−
A
+
1
!
Proof
Step
Hyp
Ref
Expression
1
aaliou3lem.c
⊢
F
=
a
∈
ℕ
⟼
2
−
a
!
2
aaliou3lem.d
⊢
L
=
∑
b
∈
ℕ
F
b
3
aaliou3lem.e
⊢
H
=
c
∈
ℕ
⟼
∑
b
=
1
c
F
b
4
peano2nn
⊢
A
∈
ℕ
→
A
+
1
∈
ℕ
5
eqid
⊢
c
∈
ℤ
≥
A
+
1
⟼
2
−
A
+
1
!
1
2
c
−
A
+
1
=
c
∈
ℤ
≥
A
+
1
⟼
2
−
A
+
1
!
1
2
c
−
A
+
1
6
5
1
aaliou3lem3
⊢
A
+
1
∈
ℕ
→
seq
A
+
1
+
F
∈
dom
⇝
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
7
3simpc
⊢
seq
A
+
1
+
F
∈
dom
⇝
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
8
4
6
7
3syl
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
9
nncn
⊢
A
∈
ℕ
→
A
∈
ℂ
10
ax-1cn
⊢
1
∈
ℂ
11
pncan
⊢
A
∈
ℂ
∧
1
∈
ℂ
→
A
+
1
-
1
=
A
12
9
10
11
sylancl
⊢
A
∈
ℕ
→
A
+
1
-
1
=
A
13
12
oveq2d
⊢
A
∈
ℕ
→
1
…
A
+
1
-
1
=
1
…
A
14
13
sumeq1d
⊢
A
∈
ℕ
→
∑
b
=
1
A
+
1
-
1
F
b
=
∑
b
=
1
A
F
b
15
14
oveq1d
⊢
A
∈
ℕ
→
∑
b
=
1
A
+
1
-
1
F
b
+
∑
b
∈
ℤ
≥
A
+
1
F
b
=
∑
b
=
1
A
F
b
+
∑
b
∈
ℤ
≥
A
+
1
F
b
16
nnuz
⊢
ℕ
=
ℤ
≥
1
17
eqid
⊢
ℤ
≥
A
+
1
=
ℤ
≥
A
+
1
18
eqidd
⊢
A
∈
ℕ
∧
b
∈
ℕ
→
F
b
=
F
b
19
fveq2
⊢
a
=
b
→
a
!
=
b
!
20
19
negeqd
⊢
a
=
b
→
−
a
!
=
−
b
!
21
20
oveq2d
⊢
a
=
b
→
2
−
a
!
=
2
−
b
!
22
ovex
⊢
2
−
b
!
∈
V
23
21
1
22
fvmpt
⊢
b
∈
ℕ
→
F
b
=
2
−
b
!
24
2rp
⊢
2
∈
ℝ
+
25
nnnn0
⊢
b
∈
ℕ
→
b
∈
ℕ
0
26
faccl
⊢
b
∈
ℕ
0
→
b
!
∈
ℕ
27
25
26
syl
⊢
b
∈
ℕ
→
b
!
∈
ℕ
28
27
nnzd
⊢
b
∈
ℕ
→
b
!
∈
ℤ
29
28
znegcld
⊢
b
∈
ℕ
→
−
b
!
∈
ℤ
30
rpexpcl
⊢
2
∈
ℝ
+
∧
−
b
!
∈
ℤ
→
2
−
b
!
∈
ℝ
+
31
24
29
30
sylancr
⊢
b
∈
ℕ
→
2
−
b
!
∈
ℝ
+
32
31
rpcnd
⊢
b
∈
ℕ
→
2
−
b
!
∈
ℂ
33
23
32
eqeltrd
⊢
b
∈
ℕ
→
F
b
∈
ℂ
34
33
adantl
⊢
A
∈
ℕ
∧
b
∈
ℕ
→
F
b
∈
ℂ
35
1nn
⊢
1
∈
ℕ
36
eqid
⊢
c
∈
ℤ
≥
1
⟼
2
−
1
!
1
2
c
−
1
=
c
∈
ℤ
≥
1
⟼
2
−
1
!
1
2
c
−
1
37
36
1
aaliou3lem3
⊢
1
∈
ℕ
→
seq
1
+
F
∈
dom
⇝
∧
∑
b
∈
ℤ
≥
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
1
F
b
≤
2
2
−
1
!
38
37
simp1d
⊢
1
∈
ℕ
→
seq
1
+
F
∈
dom
⇝
39
35
38
mp1i
⊢
A
∈
ℕ
→
seq
1
+
F
∈
dom
⇝
40
16
17
4
18
34
39
isumsplit
⊢
A
∈
ℕ
→
∑
b
∈
ℕ
F
b
=
∑
b
=
1
A
+
1
-
1
F
b
+
∑
b
∈
ℤ
≥
A
+
1
F
b
41
oveq2
⊢
c
=
A
→
1
…
c
=
1
…
A
42
41
sumeq1d
⊢
c
=
A
→
∑
b
=
1
c
F
b
=
∑
b
=
1
A
F
b
43
sumex
⊢
∑
b
=
1
A
F
b
∈
V
44
42
3
43
fvmpt
⊢
A
∈
ℕ
→
H
A
=
∑
b
=
1
A
F
b
45
44
oveq1d
⊢
A
∈
ℕ
→
H
A
+
∑
b
∈
ℤ
≥
A
+
1
F
b
=
∑
b
=
1
A
F
b
+
∑
b
∈
ℤ
≥
A
+
1
F
b
46
15
40
45
3eqtr4rd
⊢
A
∈
ℕ
→
H
A
+
∑
b
∈
ℤ
≥
A
+
1
F
b
=
∑
b
∈
ℕ
F
b
47
46
2
eqtr4di
⊢
A
∈
ℕ
→
H
A
+
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
48
1
2
3
aaliou3lem4
⊢
L
∈
ℝ
49
48
recni
⊢
L
∈
ℂ
50
49
a1i
⊢
A
∈
ℕ
→
L
∈
ℂ
51
1
2
3
aaliou3lem5
⊢
A
∈
ℕ
→
H
A
∈
ℝ
52
51
recnd
⊢
A
∈
ℕ
→
H
A
∈
ℂ
53
6
simp2d
⊢
A
+
1
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
54
4
53
syl
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
55
54
rpcnd
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℂ
56
50
52
55
subaddd
⊢
A
∈
ℕ
→
L
−
H
A
=
∑
b
∈
ℤ
≥
A
+
1
F
b
↔
H
A
+
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
57
47
56
mpbird
⊢
A
∈
ℕ
→
L
−
H
A
=
∑
b
∈
ℤ
≥
A
+
1
F
b
58
57
eqcomd
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
−
H
A
59
eleq1
⊢
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
−
H
A
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
↔
L
−
H
A
∈
ℝ
+
60
breq1
⊢
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
−
H
A
→
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
↔
L
−
H
A
≤
2
2
−
A
+
1
!
61
59
60
anbi12d
⊢
∑
b
∈
ℤ
≥
A
+
1
F
b
=
L
−
H
A
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
↔
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
62
58
61
syl
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
↔
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
63
51
adantr
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
∈
ℝ
64
simprl
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
−
H
A
∈
ℝ
+
65
difrp
⊢
H
A
∈
ℝ
∧
L
∈
ℝ
→
H
A
<
L
↔
L
−
H
A
∈
ℝ
+
66
63
48
65
sylancl
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
<
L
↔
L
−
H
A
∈
ℝ
+
67
64
66
mpbird
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
<
L
68
63
67
ltned
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
≠
L
69
nnnn0
⊢
A
+
1
∈
ℕ
→
A
+
1
∈
ℕ
0
70
faccl
⊢
A
+
1
∈
ℕ
0
→
A
+
1
!
∈
ℕ
71
4
69
70
3syl
⊢
A
∈
ℕ
→
A
+
1
!
∈
ℕ
72
71
nnzd
⊢
A
∈
ℕ
→
A
+
1
!
∈
ℤ
73
72
znegcld
⊢
A
∈
ℕ
→
−
A
+
1
!
∈
ℤ
74
rpexpcl
⊢
2
∈
ℝ
+
∧
−
A
+
1
!
∈
ℤ
→
2
−
A
+
1
!
∈
ℝ
+
75
24
73
74
sylancr
⊢
A
∈
ℕ
→
2
−
A
+
1
!
∈
ℝ
+
76
rpmulcl
⊢
2
∈
ℝ
+
∧
2
−
A
+
1
!
∈
ℝ
+
→
2
2
−
A
+
1
!
∈
ℝ
+
77
24
75
76
sylancr
⊢
A
∈
ℕ
→
2
2
−
A
+
1
!
∈
ℝ
+
78
77
adantr
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
2
2
−
A
+
1
!
∈
ℝ
+
79
78
rpred
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
2
2
−
A
+
1
!
∈
ℝ
80
63
79
resubcld
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
−
2
2
−
A
+
1
!
∈
ℝ
81
48
a1i
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
∈
ℝ
82
63
78
ltsubrpd
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
−
2
2
−
A
+
1
!
<
H
A
83
80
63
81
82
67
lttrd
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
−
2
2
−
A
+
1
!
<
L
84
80
81
83
ltled
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
−
2
2
−
A
+
1
!
≤
L
85
simprr
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
−
H
A
≤
2
2
−
A
+
1
!
86
81
63
79
lesubadd2d
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
−
H
A
≤
2
2
−
A
+
1
!
↔
L
≤
H
A
+
2
2
−
A
+
1
!
87
85
86
mpbid
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
≤
H
A
+
2
2
−
A
+
1
!
88
81
63
79
absdifled
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
−
H
A
≤
2
2
−
A
+
1
!
↔
H
A
−
2
2
−
A
+
1
!
≤
L
∧
L
≤
H
A
+
2
2
−
A
+
1
!
89
84
87
88
mpbir2and
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
L
−
H
A
≤
2
2
−
A
+
1
!
90
68
89
jca
⊢
A
∈
ℕ
∧
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
≠
L
∧
L
−
H
A
≤
2
2
−
A
+
1
!
91
90
ex
⊢
A
∈
ℕ
→
L
−
H
A
∈
ℝ
+
∧
L
−
H
A
≤
2
2
−
A
+
1
!
→
H
A
≠
L
∧
L
−
H
A
≤
2
2
−
A
+
1
!
92
62
91
sylbid
⊢
A
∈
ℕ
→
∑
b
∈
ℤ
≥
A
+
1
F
b
∈
ℝ
+
∧
∑
b
∈
ℤ
≥
A
+
1
F
b
≤
2
2
−
A
+
1
!
→
H
A
≠
L
∧
L
−
H
A
≤
2
2
−
A
+
1
!
93
8
92
mpd
⊢
A
∈
ℕ
→
H
A
≠
L
∧
L
−
H
A
≤
2
2
−
A
+
1
!