Metamath Proof Explorer


Theorem aaliou3lem7

Description: Lemma for aaliou3 . (Contributed by Stefan O'Rear, 16-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F=a2a!
aaliou3lem.d L=bFb
aaliou3lem.e H=cb=1cFb
Assertion aaliou3lem7 AHALLHA22A+1!

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F=a2a!
2 aaliou3lem.d L=bFb
3 aaliou3lem.e H=cb=1cFb
4 peano2nn AA+1
5 eqid cA+12A+1!12cA+1=cA+12A+1!12cA+1
6 5 1 aaliou3lem3 A+1seqA+1+FdombA+1Fb+bA+1Fb22A+1!
7 3simpc seqA+1+FdombA+1Fb+bA+1Fb22A+1!bA+1Fb+bA+1Fb22A+1!
8 4 6 7 3syl AbA+1Fb+bA+1Fb22A+1!
9 nncn AA
10 ax-1cn 1
11 pncan A1A+1-1=A
12 9 10 11 sylancl AA+1-1=A
13 12 oveq2d A1A+1-1=1A
14 13 sumeq1d Ab=1A+1-1Fb=b=1AFb
15 14 oveq1d Ab=1A+1-1Fb+bA+1Fb=b=1AFb+bA+1Fb
16 nnuz =1
17 eqid A+1=A+1
18 eqidd AbFb=Fb
19 fveq2 a=ba!=b!
20 19 negeqd a=ba!=b!
21 20 oveq2d a=b2a!=2b!
22 ovex 2b!V
23 21 1 22 fvmpt bFb=2b!
24 2rp 2+
25 nnnn0 bb0
26 faccl b0b!
27 25 26 syl bb!
28 27 nnzd bb!
29 28 znegcld bb!
30 rpexpcl 2+b!2b!+
31 24 29 30 sylancr b2b!+
32 31 rpcnd b2b!
33 23 32 eqeltrd bFb
34 33 adantl AbFb
35 1nn 1
36 eqid c121!12c1=c121!12c1
37 36 1 aaliou3lem3 1seq1+Fdomb1Fb+b1Fb221!
38 37 simp1d 1seq1+Fdom
39 35 38 mp1i Aseq1+Fdom
40 16 17 4 18 34 39 isumsplit AbFb=b=1A+1-1Fb+bA+1Fb
41 oveq2 c=A1c=1A
42 41 sumeq1d c=Ab=1cFb=b=1AFb
43 sumex b=1AFbV
44 42 3 43 fvmpt AHA=b=1AFb
45 44 oveq1d AHA+bA+1Fb=b=1AFb+bA+1Fb
46 15 40 45 3eqtr4rd AHA+bA+1Fb=bFb
47 46 2 eqtr4di AHA+bA+1Fb=L
48 1 2 3 aaliou3lem4 L
49 48 recni L
50 49 a1i AL
51 1 2 3 aaliou3lem5 AHA
52 51 recnd AHA
53 6 simp2d A+1bA+1Fb+
54 4 53 syl AbA+1Fb+
55 54 rpcnd AbA+1Fb
56 50 52 55 subaddd ALHA=bA+1FbHA+bA+1Fb=L
57 47 56 mpbird ALHA=bA+1Fb
58 57 eqcomd AbA+1Fb=LHA
59 eleq1 bA+1Fb=LHAbA+1Fb+LHA+
60 breq1 bA+1Fb=LHAbA+1Fb22A+1!LHA22A+1!
61 59 60 anbi12d bA+1Fb=LHAbA+1Fb+bA+1Fb22A+1!LHA+LHA22A+1!
62 58 61 syl AbA+1Fb+bA+1Fb22A+1!LHA+LHA22A+1!
63 51 adantr ALHA+LHA22A+1!HA
64 simprl ALHA+LHA22A+1!LHA+
65 difrp HALHA<LLHA+
66 63 48 65 sylancl ALHA+LHA22A+1!HA<LLHA+
67 64 66 mpbird ALHA+LHA22A+1!HA<L
68 63 67 ltned ALHA+LHA22A+1!HAL
69 nnnn0 A+1A+10
70 faccl A+10A+1!
71 4 69 70 3syl AA+1!
72 71 nnzd AA+1!
73 72 znegcld AA+1!
74 rpexpcl 2+A+1!2A+1!+
75 24 73 74 sylancr A2A+1!+
76 rpmulcl 2+2A+1!+22A+1!+
77 24 75 76 sylancr A22A+1!+
78 77 adantr ALHA+LHA22A+1!22A+1!+
79 78 rpred ALHA+LHA22A+1!22A+1!
80 63 79 resubcld ALHA+LHA22A+1!HA22A+1!
81 48 a1i ALHA+LHA22A+1!L
82 63 78 ltsubrpd ALHA+LHA22A+1!HA22A+1!<HA
83 80 63 81 82 67 lttrd ALHA+LHA22A+1!HA22A+1!<L
84 80 81 83 ltled ALHA+LHA22A+1!HA22A+1!L
85 simprr ALHA+LHA22A+1!LHA22A+1!
86 81 63 79 lesubadd2d ALHA+LHA22A+1!LHA22A+1!LHA+22A+1!
87 85 86 mpbid ALHA+LHA22A+1!LHA+22A+1!
88 81 63 79 absdifled ALHA+LHA22A+1!LHA22A+1!HA22A+1!LLHA+22A+1!
89 84 87 88 mpbir2and ALHA+LHA22A+1!LHA22A+1!
90 68 89 jca ALHA+LHA22A+1!HALLHA22A+1!
91 90 ex ALHA+LHA22A+1!HALLHA22A+1!
92 62 91 sylbid AbA+1Fb+bA+1Fb22A+1!HALLHA22A+1!
93 8 92 mpd AHALLHA22A+1!