Metamath Proof Explorer


Theorem aaliou3lem9

Description: Example of a "Liouville number", a very simple definable transcendental real. (Contributed by Stefan O'Rear, 20-Nov-2014)

Ref Expression
Hypotheses aaliou3lem.c F=a2a!
aaliou3lem.d L=bFb
aaliou3lem.e H=cb=1cFb
Assertion aaliou3lem9 ¬L𝔸

Proof

Step Hyp Ref Expression
1 aaliou3lem.c F=a2a!
2 aaliou3lem.d L=bFb
3 aaliou3lem.e H=cb=1cFb
4 aaliou3lem8 ab+e22e+1!b2e!a
5 1 2 3 aaliou3lem6 eHe2e!
6 5 ad2antrl ab+e22e+1!b2e!aHe2e!
7 2nn 2
8 nnnn0 ee0
9 8 ad2antrl ab+e22e+1!b2e!ae0
10 faccl e0e!
11 nnnn0 e!e!0
12 9 10 11 3syl ab+e22e+1!b2e!ae!0
13 nnexpcl 2e!02e!
14 7 12 13 sylancr ab+e22e+1!b2e!a2e!
15 1 2 3 aaliou3lem5 eHe
16 15 ad2antrl ab+e22e+1!b2e!aHe
17 16 recnd ab+e22e+1!b2e!aHe
18 14 nncnd ab+e22e+1!b2e!a2e!
19 14 nnne0d ab+e22e+1!b2e!a2e!0
20 17 18 19 divcan4d ab+e22e+1!b2e!aHe2e!2e!=He
21 1 2 3 aaliou3lem7 eHeLLHe22e+1!
22 21 simpld eHeL
23 22 ad2antrl ab+e22e+1!b2e!aHeL
24 20 23 eqnetrd ab+e22e+1!b2e!aHe2e!2e!L
25 24 necomd ab+e22e+1!b2e!aLHe2e!2e!
26 25 neneqd ab+e22e+1!b2e!a¬L=He2e!2e!
27 1 2 3 aaliou3lem4 L
28 14 nnred ab+e22e+1!b2e!a2e!
29 16 28 remulcld ab+e22e+1!b2e!aHe2e!
30 29 14 nndivred ab+e22e+1!b2e!aHe2e!2e!
31 resubcl LHe2e!2e!LHe2e!2e!
32 27 30 31 sylancr ab+e22e+1!b2e!aLHe2e!2e!
33 32 recnd ab+e22e+1!b2e!aLHe2e!2e!
34 33 abscld ab+e22e+1!b2e!aLHe2e!2e!
35 simplr ab+e22e+1!b2e!ab+
36 nnnn0 aa0
37 36 ad2antrr ab+e22e+1!b2e!aa0
38 14 37 nnexpcld ab+e22e+1!b2e!a2e!a
39 38 nnrpd ab+e22e+1!b2e!a2e!a+
40 35 39 rpdivcld ab+e22e+1!b2e!ab2e!a+
41 40 rpred ab+e22e+1!b2e!ab2e!a
42 2rp 2+
43 peano2nn0 e0e+10
44 faccl e+10e+1!
45 9 43 44 3syl ab+e22e+1!b2e!ae+1!
46 nnz e+1!e+1!
47 znegcl e+1!e+1!
48 45 46 47 3syl ab+e22e+1!b2e!ae+1!
49 rpexpcl 2+e+1!2e+1!+
50 42 48 49 sylancr ab+e22e+1!b2e!a2e+1!+
51 rpmulcl 2+2e+1!+22e+1!+
52 42 50 51 sylancr ab+e22e+1!b2e!a22e+1!+
53 52 rpred ab+e22e+1!b2e!a22e+1!
54 20 oveq2d ab+e22e+1!b2e!aLHe2e!2e!=LHe
55 54 fveq2d ab+e22e+1!b2e!aLHe2e!2e!=LHe
56 21 simprd eLHe22e+1!
57 56 ad2antrl ab+e22e+1!b2e!aLHe22e+1!
58 55 57 eqbrtrd ab+e22e+1!b2e!aLHe2e!2e!22e+1!
59 simprr ab+e22e+1!b2e!a22e+1!b2e!a
60 34 53 41 58 59 letrd ab+e22e+1!b2e!aLHe2e!2e!b2e!a
61 34 41 60 lensymd ab+e22e+1!b2e!a¬b2e!a<LHe2e!2e!
62 oveq1 f=He2e!fd=He2e!d
63 62 eqeq2d f=He2e!L=fdL=He2e!d
64 63 notbid f=He2e!¬L=fd¬L=He2e!d
65 62 oveq2d f=He2e!Lfd=LHe2e!d
66 65 fveq2d f=He2e!Lfd=LHe2e!d
67 66 breq2d f=He2e!bda<Lfdbda<LHe2e!d
68 67 notbid f=He2e!¬bda<Lfd¬bda<LHe2e!d
69 64 68 anbi12d f=He2e!¬L=fd¬bda<Lfd¬L=He2e!d¬bda<LHe2e!d
70 oveq2 d=2e!He2e!d=He2e!2e!
71 70 eqeq2d d=2e!L=He2e!dL=He2e!2e!
72 71 notbid d=2e!¬L=He2e!d¬L=He2e!2e!
73 oveq1 d=2e!da=2e!a
74 73 oveq2d d=2e!bda=b2e!a
75 70 oveq2d d=2e!LHe2e!d=LHe2e!2e!
76 75 fveq2d d=2e!LHe2e!d=LHe2e!2e!
77 74 76 breq12d d=2e!bda<LHe2e!db2e!a<LHe2e!2e!
78 77 notbid d=2e!¬bda<LHe2e!d¬b2e!a<LHe2e!2e!
79 72 78 anbi12d d=2e!¬L=He2e!d¬bda<LHe2e!d¬L=He2e!2e!¬b2e!a<LHe2e!2e!
80 69 79 rspc2ev He2e!2e!¬L=He2e!2e!¬b2e!a<LHe2e!2e!fd¬L=fd¬bda<Lfd
81 6 14 26 61 80 syl112anc ab+e22e+1!b2e!afd¬L=fd¬bda<Lfd
82 4 81 rexlimddv ab+fd¬L=fd¬bda<Lfd
83 pm4.56 ¬L=fd¬bda<Lfd¬L=fdbda<Lfd
84 83 rexbii d¬L=fd¬bda<Lfdd¬L=fdbda<Lfd
85 rexnal d¬L=fdbda<Lfd¬dL=fdbda<Lfd
86 84 85 bitri d¬L=fd¬bda<Lfd¬dL=fdbda<Lfd
87 86 rexbii fd¬L=fd¬bda<Lfdf¬dL=fdbda<Lfd
88 rexnal f¬dL=fdbda<Lfd¬fdL=fdbda<Lfd
89 87 88 bitri fd¬L=fd¬bda<Lfd¬fdL=fdbda<Lfd
90 82 89 sylib ab+¬fdL=fdbda<Lfd
91 90 nrexdv a¬b+fdL=fdbda<Lfd
92 91 nrex ¬ab+fdL=fdbda<Lfd
93 aaliou2b L𝔸ab+fdL=fdbda<Lfd
94 92 93 mto ¬L𝔸