Metamath Proof Explorer


Theorem ablfac1c

Description: The factors of ablfac1b cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B=BaseG
ablfac1.o O=odG
ablfac1.s S=pAxB|OxpppCntB
ablfac1.g φGAbel
ablfac1.f φBFin
ablfac1.1 φA
ablfac1c.d D=w|wB
ablfac1.2 φDA
Assertion ablfac1c φGDProdS=B

Proof

Step Hyp Ref Expression
1 ablfac1.b B=BaseG
2 ablfac1.o O=odG
3 ablfac1.s S=pAxB|OxpppCntB
4 ablfac1.g φGAbel
5 ablfac1.f φBFin
6 ablfac1.1 φA
7 ablfac1c.d D=w|wB
8 ablfac1.2 φDA
9 1 dprdssv GDProdSB
10 9 a1i φGDProdSB
11 ssfi BFinGDProdSBGDProdSFin
12 5 9 11 sylancl φGDProdSFin
13 hashcl GDProdSFinGDProdS0
14 12 13 syl φGDProdS0
15 hashcl BFinB0
16 5 15 syl φB0
17 1 2 3 4 5 6 ablfac1b φGdomDProdS
18 dprdsubg GdomDProdSGDProdSSubGrpG
19 17 18 syl φGDProdSSubGrpG
20 1 lagsubg GDProdSSubGrpGBFinGDProdSB
21 19 5 20 syl2anc φGDProdSB
22 breq1 w=qwBqB
23 22 7 elrab2 qDqqB
24 8 sseld φqDqA
25 23 24 biimtrrid φqqBqA
26 25 impl φqqBqA
27 1 2 3 4 5 6 ablfac1a φqASq=qqpCntB
28 1 fvexi BV
29 28 rabex xB|OxpppCntBV
30 29 3 dmmpti domS=A
31 30 a1i φdomS=A
32 17 31 dprdf2 φS:ASubGrpG
33 32 ffvelcdmda φqASqSubGrpG
34 17 adantr φqAGdomDProdS
35 30 a1i φqAdomS=A
36 simpr φqAqA
37 34 35 36 dprdub φqASqGDProdS
38 19 adantr φqAGDProdSSubGrpG
39 eqid G𝑠GDProdS=G𝑠GDProdS
40 39 subsubg GDProdSSubGrpGSqSubGrpG𝑠GDProdSSqSubGrpGSqGDProdS
41 38 40 syl φqASqSubGrpG𝑠GDProdSSqSubGrpGSqGDProdS
42 33 37 41 mpbir2and φqASqSubGrpG𝑠GDProdS
43 39 subgbas GDProdSSubGrpGGDProdS=BaseG𝑠GDProdS
44 38 43 syl φqAGDProdS=BaseG𝑠GDProdS
45 12 adantr φqAGDProdSFin
46 44 45 eqeltrrd φqABaseG𝑠GDProdSFin
47 eqid BaseG𝑠GDProdS=BaseG𝑠GDProdS
48 47 lagsubg SqSubGrpG𝑠GDProdSBaseG𝑠GDProdSFinSqBaseG𝑠GDProdS
49 42 46 48 syl2anc φqASqBaseG𝑠GDProdS
50 44 fveq2d φqAGDProdS=BaseG𝑠GDProdS
51 49 50 breqtrrd φqASqGDProdS
52 27 51 eqbrtrrd φqAqqpCntBGDProdS
53 6 sselda φqAq
54 14 nn0zd φGDProdS
55 54 adantr φqAGDProdS
56 simpr φqq
57 ablgrp GAbelGGrp
58 1 grpbn0 GGrpB
59 4 57 58 3syl φB
60 hashnncl BFinBB
61 5 60 syl φBB
62 59 61 mpbird φB
63 62 adantr φqB
64 56 63 pccld φqqpCntB0
65 53 64 syldan φqAqpCntB0
66 pcdvdsb qGDProdSqpCntB0qpCntBqpCntGDProdSqqpCntBGDProdS
67 53 55 65 66 syl3anc φqAqpCntBqpCntGDProdSqqpCntBGDProdS
68 52 67 mpbird φqAqpCntBqpCntGDProdS
69 68 adantlr φqqAqpCntBqpCntGDProdS
70 26 69 syldan φqqBqpCntBqpCntGDProdS
71 pceq0 qBqpCntB=0¬qB
72 56 63 71 syl2anc φqqpCntB=0¬qB
73 72 biimpar φq¬qBqpCntB=0
74 eqid 0G=0G
75 74 subg0cl GDProdSSubGrpG0GGDProdS
76 ne0i 0GGDProdSGDProdS
77 19 75 76 3syl φGDProdS
78 hashnncl GDProdSFinGDProdSGDProdS
79 12 78 syl φGDProdSGDProdS
80 77 79 mpbird φGDProdS
81 80 adantr φqGDProdS
82 56 81 pccld φqqpCntGDProdS0
83 82 nn0ge0d φq0qpCntGDProdS
84 83 adantr φq¬qB0qpCntGDProdS
85 73 84 eqbrtrd φq¬qBqpCntBqpCntGDProdS
86 70 85 pm2.61dan φqqpCntBqpCntGDProdS
87 86 ralrimiva φqqpCntBqpCntGDProdS
88 16 nn0zd φB
89 pc2dvds BGDProdSBGDProdSqqpCntBqpCntGDProdS
90 88 54 89 syl2anc φBGDProdSqqpCntBqpCntGDProdS
91 87 90 mpbird φBGDProdS
92 dvdseq GDProdS0B0GDProdSBBGDProdSGDProdS=B
93 14 16 21 91 92 syl22anc φGDProdS=B
94 hashen GDProdSFinBFinGDProdS=BGDProdSB
95 12 5 94 syl2anc φGDProdS=BGDProdSB
96 93 95 mpbid φGDProdSB
97 fisseneq BFinGDProdSBGDProdSBGDProdS=B
98 5 10 96 97 syl3anc φGDProdS=B