Metamath Proof Explorer


Theorem abvres

Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses abvres.a A=AbsValR
abvres.s S=R𝑠C
abvres.b B=AbsValS
Assertion abvres FACSubRingRFCB

Proof

Step Hyp Ref Expression
1 abvres.a A=AbsValR
2 abvres.s S=R𝑠C
3 abvres.b B=AbsValS
4 3 a1i FACSubRingRB=AbsValS
5 2 subrgbas CSubRingRC=BaseS
6 5 adantl FACSubRingRC=BaseS
7 eqid +R=+R
8 2 7 ressplusg CSubRingR+R=+S
9 8 adantl FACSubRingR+R=+S
10 eqid R=R
11 2 10 ressmulr CSubRingRR=S
12 11 adantl FACSubRingRR=S
13 subrgsubg CSubRingRCSubGrpR
14 13 adantl FACSubRingRCSubGrpR
15 eqid 0R=0R
16 2 15 subg0 CSubGrpR0R=0S
17 14 16 syl FACSubRingR0R=0S
18 2 subrgring CSubRingRSRing
19 18 adantl FACSubRingRSRing
20 eqid BaseR=BaseR
21 1 20 abvf FAF:BaseR
22 20 subrgss CSubRingRCBaseR
23 fssres F:BaseRCBaseRFC:C
24 21 22 23 syl2an FACSubRingRFC:C
25 15 subg0cl CSubGrpR0RC
26 fvres 0RCFC0R=F0R
27 14 25 26 3syl FACSubRingRFC0R=F0R
28 1 15 abv0 FAF0R=0
29 28 adantr FACSubRingRF0R=0
30 27 29 eqtrd FACSubRingRFC0R=0
31 simp1l FACSubRingRxCx0RFA
32 22 adantl FACSubRingRCBaseR
33 32 sselda FACSubRingRxCxBaseR
34 33 3adant3 FACSubRingRxCx0RxBaseR
35 simp3 FACSubRingRxCx0Rx0R
36 1 20 15 abvgt0 FAxBaseRx0R0<Fx
37 31 34 35 36 syl3anc FACSubRingRxCx0R0<Fx
38 fvres xCFCx=Fx
39 38 3ad2ant2 FACSubRingRxCx0RFCx=Fx
40 37 39 breqtrrd FACSubRingRxCx0R0<FCx
41 simp1l FACSubRingRxCx0RyCy0RFA
42 simp1r FACSubRingRxCx0RyCy0RCSubRingR
43 42 22 syl FACSubRingRxCx0RyCy0RCBaseR
44 simp2l FACSubRingRxCx0RyCy0RxC
45 43 44 sseldd FACSubRingRxCx0RyCy0RxBaseR
46 simp3l FACSubRingRxCx0RyCy0RyC
47 43 46 sseldd FACSubRingRxCx0RyCy0RyBaseR
48 1 20 10 abvmul FAxBaseRyBaseRFxRy=FxFy
49 41 45 47 48 syl3anc FACSubRingRxCx0RyCy0RFxRy=FxFy
50 10 subrgmcl CSubRingRxCyCxRyC
51 42 44 46 50 syl3anc FACSubRingRxCx0RyCy0RxRyC
52 51 fvresd FACSubRingRxCx0RyCy0RFCxRy=FxRy
53 44 fvresd FACSubRingRxCx0RyCy0RFCx=Fx
54 46 fvresd FACSubRingRxCx0RyCy0RFCy=Fy
55 53 54 oveq12d FACSubRingRxCx0RyCy0RFCxFCy=FxFy
56 49 52 55 3eqtr4d FACSubRingRxCx0RyCy0RFCxRy=FCxFCy
57 1 20 7 abvtri FAxBaseRyBaseRFx+RyFx+Fy
58 41 45 47 57 syl3anc FACSubRingRxCx0RyCy0RFx+RyFx+Fy
59 7 subrgacl CSubRingRxCyCx+RyC
60 42 44 46 59 syl3anc FACSubRingRxCx0RyCy0Rx+RyC
61 60 fvresd FACSubRingRxCx0RyCy0RFCx+Ry=Fx+Ry
62 53 54 oveq12d FACSubRingRxCx0RyCy0RFCx+FCy=Fx+Fy
63 58 61 62 3brtr4d FACSubRingRxCx0RyCy0RFCx+RyFCx+FCy
64 4 6 9 12 17 19 24 30 40 56 63 isabvd FACSubRingRFCB