Description: The restriction of an absolute value to a subring is an absolute value. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abvres.a | |
|
abvres.s | |
||
abvres.b | |
||
Assertion | abvres | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abvres.a | |
|
2 | abvres.s | |
|
3 | abvres.b | |
|
4 | 3 | a1i | |
5 | 2 | subrgbas | |
6 | 5 | adantl | |
7 | eqid | |
|
8 | 2 7 | ressplusg | |
9 | 8 | adantl | |
10 | eqid | |
|
11 | 2 10 | ressmulr | |
12 | 11 | adantl | |
13 | subrgsubg | |
|
14 | 13 | adantl | |
15 | eqid | |
|
16 | 2 15 | subg0 | |
17 | 14 16 | syl | |
18 | 2 | subrgring | |
19 | 18 | adantl | |
20 | eqid | |
|
21 | 1 20 | abvf | |
22 | 20 | subrgss | |
23 | fssres | |
|
24 | 21 22 23 | syl2an | |
25 | 15 | subg0cl | |
26 | fvres | |
|
27 | 14 25 26 | 3syl | |
28 | 1 15 | abv0 | |
29 | 28 | adantr | |
30 | 27 29 | eqtrd | |
31 | simp1l | |
|
32 | 22 | adantl | |
33 | 32 | sselda | |
34 | 33 | 3adant3 | |
35 | simp3 | |
|
36 | 1 20 15 | abvgt0 | |
37 | 31 34 35 36 | syl3anc | |
38 | fvres | |
|
39 | 38 | 3ad2ant2 | |
40 | 37 39 | breqtrrd | |
41 | simp1l | |
|
42 | simp1r | |
|
43 | 42 22 | syl | |
44 | simp2l | |
|
45 | 43 44 | sseldd | |
46 | simp3l | |
|
47 | 43 46 | sseldd | |
48 | 1 20 10 | abvmul | |
49 | 41 45 47 48 | syl3anc | |
50 | 10 | subrgmcl | |
51 | 42 44 46 50 | syl3anc | |
52 | 51 | fvresd | |
53 | 44 | fvresd | |
54 | 46 | fvresd | |
55 | 53 54 | oveq12d | |
56 | 49 52 55 | 3eqtr4d | |
57 | 1 20 7 | abvtri | |
58 | 41 45 47 57 | syl3anc | |
59 | 7 | subrgacl | |
60 | 42 44 46 59 | syl3anc | |
61 | 60 | fvresd | |
62 | 53 54 | oveq12d | |
63 | 58 61 62 | 3brtr4d | |
64 | 4 6 9 12 17 19 24 30 40 56 63 | isabvd | |