| Step |
Hyp |
Ref |
Expression |
| 1 |
|
aks6d1c6isolem1.1 |
|
| 2 |
|
aks6d1c6isolem1.2 |
|
| 3 |
|
aks6d1c6isolem1.3 |
|
| 4 |
|
aks6d1c6isolem1.4 |
|
| 5 |
|
aks6d1c6isolem1.5 |
|
| 6 |
|
eqidd |
|
| 7 |
|
eqidd |
|
| 8 |
|
eqidd |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
1 2 3
|
primrootsunit |
|
| 12 |
11
|
simprd |
|
| 13 |
12
|
ablgrpd |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simpr |
|
| 16 |
11
|
simpld |
|
| 17 |
5 16
|
eleqtrd |
|
| 18 |
12
|
ablcmnd |
|
| 19 |
2
|
nnnn0d |
|
| 20 |
18 19 10
|
isprimroot |
|
| 21 |
20
|
biimpd |
|
| 22 |
17 21
|
mpd |
|
| 23 |
22
|
simp1d |
|
| 24 |
23
|
adantr |
|
| 25 |
9 10 14 15 24
|
mulgcld |
|
| 26 |
25 4
|
fmptd |
|
| 27 |
|
frn |
|
| 28 |
26 27
|
syl |
|
| 29 |
|
0zd |
|
| 30 |
|
simpr |
|
| 31 |
30
|
fveqeq2d |
|
| 32 |
4
|
a1i |
|
| 33 |
|
simpr |
|
| 34 |
33
|
oveq1d |
|
| 35 |
|
eqid |
|
| 36 |
9 35 10
|
mulg0 |
|
| 37 |
23 36
|
syl |
|
| 38 |
37
|
adantr |
|
| 39 |
34 38
|
eqtrd |
|
| 40 |
|
fvexd |
|
| 41 |
32 39 29 40
|
fvmptd |
|
| 42 |
29 31 41
|
rspcedvd |
|
| 43 |
26
|
ffnd |
|
| 44 |
|
fvelrnb |
|
| 45 |
43 44
|
syl |
|
| 46 |
42 45
|
mpbird |
|
| 47 |
|
fvelrnb |
|
| 48 |
43 47
|
syl |
|
| 49 |
48
|
biimpd |
|
| 50 |
49
|
imp |
|
| 51 |
50
|
3adant3 |
|
| 52 |
|
simpl1 |
|
| 53 |
|
simpl3 |
|
| 54 |
52 53
|
jca |
|
| 55 |
|
fvelrnb |
|
| 56 |
43 55
|
syl |
|
| 57 |
56
|
biimpd |
|
| 58 |
57
|
imp |
|
| 59 |
54 58
|
syl |
|
| 60 |
|
simpll1 |
|
| 61 |
|
simplr |
|
| 62 |
|
simpr |
|
| 63 |
60 61 62
|
3jca |
|
| 64 |
|
simpr |
|
| 65 |
64
|
eqcomd |
|
| 66 |
65
|
oveq2d |
|
| 67 |
|
simpr |
|
| 68 |
67
|
eqcomd |
|
| 69 |
68
|
oveq1d |
|
| 70 |
|
simpll1 |
|
| 71 |
70
|
adantr |
|
| 72 |
|
simpllr |
|
| 73 |
|
simplr |
|
| 74 |
71 72 73
|
3jca |
|
| 75 |
4
|
a1i |
|
| 76 |
|
simpr |
|
| 77 |
76
|
oveq1d |
|
| 78 |
|
simp3 |
|
| 79 |
|
ovexd |
|
| 80 |
75 77 78 79
|
fvmptd |
|
| 81 |
|
simpr |
|
| 82 |
81
|
oveq1d |
|
| 83 |
|
simp2 |
|
| 84 |
|
ovexd |
|
| 85 |
75 82 83 84
|
fvmptd |
|
| 86 |
80 85
|
oveq12d |
|
| 87 |
13
|
3ad2ant1 |
|
| 88 |
23
|
3ad2ant1 |
|
| 89 |
78 83 88
|
3jca |
|
| 90 |
|
eqid |
|
| 91 |
9 10 90
|
mulgdir |
|
| 92 |
87 89 91
|
syl2anc |
|
| 93 |
78 83
|
zaddcld |
|
| 94 |
|
simpr |
|
| 95 |
94
|
fveqeq2d |
|
| 96 |
|
simpr |
|
| 97 |
96
|
oveq1d |
|
| 98 |
|
ovexd |
|
| 99 |
75 97 93 98
|
fvmptd |
|
| 100 |
93 95 99
|
rspcedvd |
|
| 101 |
|
fvelrnb |
|
| 102 |
43 101
|
syl |
|
| 103 |
102
|
3ad2ant1 |
|
| 104 |
100 103
|
mpbird |
|
| 105 |
92 104
|
eqeltrrd |
|
| 106 |
86 105
|
eqeltrd |
|
| 107 |
74 106
|
syl |
|
| 108 |
69 107
|
eqeltrd |
|
| 109 |
|
simpl2 |
|
| 110 |
|
nfv |
|
| 111 |
|
nfv |
|
| 112 |
|
fveqeq2 |
|
| 113 |
110 111 112
|
cbvrexw |
|
| 114 |
113
|
biimpi |
|
| 115 |
109 114
|
syl |
|
| 116 |
108 115
|
r19.29a |
|
| 117 |
116
|
adantr |
|
| 118 |
66 117
|
eqeltrd |
|
| 119 |
|
simp3 |
|
| 120 |
|
nfv |
|
| 121 |
|
nfv |
|
| 122 |
|
fveqeq2 |
|
| 123 |
120 121 122
|
cbvrexw |
|
| 124 |
123
|
biimpi |
|
| 125 |
119 124
|
syl |
|
| 126 |
118 125
|
r19.29a |
|
| 127 |
63 126
|
syl |
|
| 128 |
127
|
ex |
|
| 129 |
59 128
|
mpd |
|
| 130 |
51 129
|
mpdan |
|
| 131 |
|
simpr |
|
| 132 |
131
|
eqcomd |
|
| 133 |
132
|
fveq2d |
|
| 134 |
|
simplll |
|
| 135 |
|
simplr |
|
| 136 |
134 135
|
jca |
|
| 137 |
|
simpr |
|
| 138 |
137
|
znegcld |
|
| 139 |
|
simpr |
|
| 140 |
139
|
fveqeq2d |
|
| 141 |
4
|
a1i |
|
| 142 |
|
simpr |
|
| 143 |
142
|
oveq1d |
|
| 144 |
|
ovexd |
|
| 145 |
141 143 138 144
|
fvmptd |
|
| 146 |
13
|
adantr |
|
| 147 |
23
|
adantr |
|
| 148 |
|
eqid |
|
| 149 |
9 10 148
|
mulgneg |
|
| 150 |
146 137 147 149
|
syl3anc |
|
| 151 |
|
simpr |
|
| 152 |
151
|
oveq1d |
|
| 153 |
|
ovexd |
|
| 154 |
141 152 137 153
|
fvmptd |
|
| 155 |
154
|
eqcomd |
|
| 156 |
155
|
fveq2d |
|
| 157 |
150 156
|
eqtrd |
|
| 158 |
145 157
|
eqtrd |
|
| 159 |
138 140 158
|
rspcedvd |
|
| 160 |
|
fvelrnb |
|
| 161 |
43 160
|
syl |
|
| 162 |
161
|
adantr |
|
| 163 |
159 162
|
mpbird |
|
| 164 |
163
|
a1i |
|
| 165 |
136 164
|
mpd |
|
| 166 |
133 165
|
eqeltrd |
|
| 167 |
114
|
adantl |
|
| 168 |
166 167
|
r19.29a |
|
| 169 |
168
|
ex |
|
| 170 |
169
|
adantr |
|
| 171 |
170
|
imp |
|
| 172 |
50 171
|
mpdan |
|
| 173 |
6 7 8 28 46 130 172 13
|
issubgrpd |
|