Metamath Proof Explorer


Theorem bposlem8

Description: Lemma for bpos . Evaluate F ( 6 4 ) and show it is less than log 2 . (Contributed by Mario Carneiro, 14-Mar-2014)

Ref Expression
Hypotheses bposlem7.1 F=n2Gn+94Gn2+log22n
bposlem7.2 G=x+logxx
Assertion bposlem8 F64F64<log2

Proof

Step Hyp Ref Expression
1 bposlem7.1 F=n2Gn+94Gn2+log22n
2 bposlem7.2 G=x+logxx
3 6nn0 60
4 4nn 4
5 3 4 decnncl 64
6 fveq2 n=64n=64
7 8cn 8
8 7 sqvali 82=88
9 8t8e64 88=64
10 8 9 eqtri 82=64
11 10 fveq2i 82=64
12 0re 0
13 8re 8
14 8pos 0<8
15 12 13 14 ltleii 08
16 13 sqrtsqi 0882=8
17 15 16 ax-mp 82=8
18 11 17 eqtr3i 64=8
19 6 18 eqtrdi n=64n=8
20 19 fveq2d n=64Gn=G8
21 8nn 8
22 nnrp 88+
23 fveq2 x=8logx=log8
24 cu2 23=8
25 24 fveq2i log23=log8
26 2rp 2+
27 3z 3
28 relogexp 2+3log23=3log2
29 26 27 28 mp2an log23=3log2
30 25 29 eqtr3i log8=3log2
31 23 30 eqtrdi x=8logx=3log2
32 id x=8x=8
33 31 32 oveq12d x=8logxx=3log28
34 3cn 3
35 2nn 2
36 nnrp 22+
37 relogcl 2+log2
38 35 36 37 mp2b log2
39 38 recni log2
40 21 nnne0i 80
41 34 39 7 40 div23i 3log28=38log2
42 33 41 eqtrdi x=8logxx=38log2
43 ovex 38log2V
44 42 2 43 fvmpt 8+G8=38log2
45 21 22 44 mp2b G8=38log2
46 20 45 eqtrdi n=64Gn=38log2
47 46 oveq2d n=642Gn=238log2
48 sqrt2re 2
49 48 recni 2
50 34 7 40 divcli 38
51 49 50 39 mulassi 238log2=238log2
52 4cn 4
53 49 52 49 mul12i 242=422
54 2re 2
55 0le2 02
56 remsqsqrt 20222=2
57 54 55 56 mp2an 22=2
58 57 oveq2i 422=42
59 4t2e8 42=8
60 53 58 59 3eqtri 242=8
61 60 oveq2i 23242=238
62 52 49 mulcli 42
63 nnrp 44+
64 4 63 ax-mp 4+
65 rpsqrtcl 2+2+
66 35 36 65 mp2b 2+
67 rpmulcl 4+2+42+
68 64 66 67 mp2an 42+
69 rpne0 42+420
70 68 69 ax-mp 420
71 rpne0 2+20
72 26 65 71 mp2b 20
73 divcan5 34242022023242=342
74 34 73 mp3an1 4242022023242=342
75 62 70 49 72 74 mp4an 23242=342
76 4ne0 40
77 divdiv1 3440220342=342
78 34 77 mp3an1 440220342=342
79 52 76 49 72 78 mp4an 342=342
80 75 79 eqtr4i 23242=342
81 49 34 7 40 divassi 238=238
82 61 80 81 3eqtr3ri 238=342
83 82 oveq1i 238log2=342log2
84 51 83 eqtr3i 238log2=342log2
85 47 84 eqtrdi n=642Gn=342log2
86 oveq1 n=64n2=642
87 df-6 6=5+1
88 87 oveq2i 26=25+1
89 2exp6 26=64
90 2cn 2
91 5nn0 50
92 expp1 25025+1=252
93 90 91 92 mp2an 25+1=252
94 88 89 93 3eqtr3i 64=252
95 94 oveq1i 642=2522
96 nnexpcl 25025
97 35 91 96 mp2an 25
98 97 nncni 25
99 2ne0 20
100 98 90 99 divcan4i 2522=25
101 95 100 eqtri 642=25
102 86 101 eqtrdi n=64n2=25
103 102 fveq2d n=64Gn2=G25
104 nnrp 2525+
105 fveq2 x=25logx=log25
106 5nn 5
107 106 nnzi 5
108 relogexp 2+5log25=5log2
109 26 107 108 mp2an log25=5log2
110 105 109 eqtrdi x=25logx=5log2
111 id x=25x=25
112 110 111 oveq12d x=25logxx=5log225
113 5cn 5
114 97 nnne0i 250
115 113 39 98 114 div23i 5log225=525log2
116 112 115 eqtrdi x=25logxx=525log2
117 ovex 525log2V
118 116 2 117 fvmpt 25+G25=525log2
119 97 104 118 mp2b G25=525log2
120 103 119 eqtrdi n=64Gn2=525log2
121 120 oveq2d n=6494Gn2=94525log2
122 9cn 9
123 122 52 76 divcli 94
124 113 98 114 divcli 525
125 123 124 39 mulassi 94525log2=94525log2
126 121 125 eqtr4di n=6494Gn2=94525log2
127 85 126 oveq12d n=642Gn+94Gn2=342log2+94525log2
128 34 52 76 divcli 34
129 128 49 72 divcli 342
130 123 124 mulcli 94525
131 129 130 39 adddiri 342+94525log2=342log2+94525log2
132 127 131 eqtr4di n=642Gn+94Gn2=342+94525log2
133 oveq2 n=642n=264
134 133 fveq2d n=642n=264
135 5 nnrei 64
136 5 nngt0i 0<64
137 12 135 136 ltleii 064
138 54 135 55 137 sqrtmulii 264=264
139 18 oveq2i 264=28
140 138 139 eqtri 264=28
141 134 140 eqtrdi n=642n=28
142 141 oveq2d n=64log22n=log228
143 49 7 mulcli 28
144 rpmulcl 2+8+28+
145 66 22 144 sylancr 828+
146 rpne0 28+280
147 21 145 146 mp2b 280
148 divrec2 log228280log228=128log2
149 39 143 147 148 mp3an log228=128log2
150 49 7 mulcomi 28=82
151 150 oveq2i 128=182
152 recdiv2 880220182=182
153 7 40 49 72 152 mp4an 182=182
154 151 153 eqtr4i 128=182
155 154 oveq1i 128log2=182log2
156 149 155 eqtri log228=182log2
157 142 156 eqtrdi n=64log22n=182log2
158 132 157 oveq12d n=642Gn+94Gn2+log22n=342+94525log2+182log2
159 129 130 addcli 342+94525
160 7 40 reccli 18
161 160 49 72 divcli 182
162 159 161 39 adddiri 342+94525+182log2=342+94525log2+182log2
163 158 162 eqtr4di n=642Gn+94Gn2+log22n=342+94525+182log2
164 ovex 342+94525+182log2V
165 163 1 164 fvmpt 64F64=342+94525+182log2
166 5 165 ax-mp F64=342+94525+182log2
167 3re 3
168 4re 4
169 167 168 76 redivcli 34
170 169 48 72 redivcli 342
171 9re 9
172 171 168 76 redivcli 94
173 5re 5
174 97 nnrei 25
175 173 174 114 redivcli 525
176 172 175 remulcli 94525
177 170 176 readdcli 342+94525
178 13 40 rereccli 18
179 178 48 72 redivcli 182
180 177 179 readdcli 342+94525+182
181 180 38 remulcli 342+94525+182log2
182 166 181 eqeltri F64
183 129 130 161 add32i 342+94525+182=342+182+94525
184 6cn 6
185 ax-1cn 1
186 184 185 7 40 divdiri 6+18=68+18
187 df-7 7=6+1
188 187 oveq1i 78=6+18
189 divcan5 34402202324=34
190 34 189 mp3an1 4402202324=34
191 52 76 90 99 190 mp4an 2324=34
192 3t2e6 32=6
193 34 90 192 mulcomli 23=6
194 52 90 59 mulcomli 24=8
195 193 194 oveq12i 2324=68
196 191 195 eqtr3i 34=68
197 196 oveq1i 34+18=68+18
198 186 188 197 3eqtr4ri 34+18=78
199 198 oveq1i 34+182=782
200 128 160 49 72 divdiri 34+182=342+182
201 7cn 7
202 201 7 49 40 72 divdiv32i 782=728
203 199 200 202 3eqtr3i 342+182=728
204 203 oveq1i 342+182+94525=728+94525
205 183 204 eqtri 342+94525+182=728+94525
206 4nn0 40
207 9nn0 90
208 0nn0 00
209 9lt10 9<10
210 4lt5 4<5
211 206 91 207 208 209 210 decltc 49<50
212 7t7e49 77=49
213 57 oveq1i 2255=255
214 49 49 113 113 mul4i 2255=2525
215 5t2e10 52=10
216 113 90 215 mulcomli 25=10
217 216 oveq1i 255=105
218 90 113 113 mulassi 255=255
219 91 dec0u 105=50
220 217 218 219 3eqtr3i 255=50
221 213 214 220 3eqtr3i 2525=50
222 211 212 221 3brtr4i 77<2525
223 7re 7
224 7pos 0<7
225 12 223 224 ltleii 07
226 nnrp 55+
227 106 226 ax-mp 5+
228 rpmulcl 2+5+25+
229 66 227 228 mp2an 25+
230 rpge0 25+025
231 229 230 ax-mp 025
232 rpre 25+25
233 229 232 ax-mp 25
234 223 233 lt2msqi 070257<2577<2525
235 225 231 234 mp2an 7<2577<2525
236 222 235 mpbir 7<25
237 rpgt0 2+0<2
238 26 65 237 mp2b 0<2
239 ltdivmul 7520<272<57<25
240 223 173 239 mp3an12 20<272<57<25
241 48 238 240 mp2an 72<57<25
242 236 241 mpbir 72<5
243 223 48 72 redivcli 72
244 243 173 13 14 ltdiv1ii 72<5728<58
245 242 244 mpbi 728<58
246 divsubdir 83880838=8838
247 7 34 246 mp3an12 880838=8838
248 7 40 247 mp2an 838=8838
249 5p3e8 5+3=8
250 249 oveq1i 5+3-3=83
251 113 34 pncan3oi 5+3-3=5
252 250 251 eqtr3i 83=5
253 252 oveq1i 838=58
254 7 40 dividi 88=1
255 254 oveq1i 8838=138
256 248 253 255 3eqtr3ri 138=58
257 5lt8 5<8
258 13 173 remulcli 85
259 173 13 258 ltadd2i 5<885+5<85+8
260 257 259 mpbi 85+5<85+8
261 df-9 9=8+1
262 261 oveq1i 95=8+15
263 7 185 113 adddiri 8+15=85+15
264 113 mullidi 15=5
265 264 oveq2i 85+15=85+5
266 262 263 265 3eqtri 95=85+5
267 87 oveq2i 86=85+1
268 7 113 185 adddii 85+1=85+81
269 7 mulridi 81=8
270 269 oveq2i 85+81=85+8
271 267 268 270 3eqtri 86=85+8
272 260 266 271 3brtr4i 95<86
273 171 173 remulcli 95
274 6re 6
275 13 274 remulcli 86
276 168 174 remulcli 425
277 4 97 nnmulcli 425
278 277 nngt0i 0<425
279 273 275 276 278 ltdiv1ii 95<8695425<86425
280 272 279 mpbi 95425<86425
281 122 52 113 98 76 114 divmuldivi 94525=95425
282 nnexpcl 24024
283 35 206 282 mp2an 24
284 283 nncni 24
285 283 nnne0i 240
286 divcan5 388024240243248=38
287 34 286 mp3an1 88024240243248=38
288 7 40 284 285 287 mp4an 243248=38
289 df-4 4=3+1
290 289 oveq2i 24=23+1
291 3nn0 30
292 expp1 23023+1=232
293 90 291 292 mp2an 23+1=232
294 24 oveq1i 232=82
295 290 293 294 3eqtri 24=82
296 295 oveq1i 243=823
297 7 90 34 mulassi 823=823
298 193 oveq2i 823=86
299 296 297 298 3eqtri 243=86
300 4p3e7 4+3=7
301 5p2e7 5+2=7
302 113 90 addcomi 5+2=2+5
303 300 301 302 3eqtr2i 4+3=2+5
304 303 oveq2i 24+3=22+5
305 expadd 2403024+3=2423
306 90 206 291 305 mp3an 24+3=2423
307 2nn0 20
308 expadd 2205022+5=2225
309 90 307 91 308 mp3an 22+5=2225
310 304 306 309 3eqtr3i 2423=2225
311 24 oveq2i 2423=248
312 sq2 22=4
313 312 oveq1i 2225=425
314 310 311 313 3eqtr3i 248=425
315 299 314 oveq12i 243248=86425
316 288 315 eqtr3i 38=86425
317 280 281 316 3brtr4i 94525<38
318 167 13 40 redivcli 38
319 1re 1
320 ltsub2 9452538194525<38138<194525
321 176 318 319 320 mp3an 94525<38138<194525
322 317 321 mpbi 138<194525
323 256 322 eqbrtrri 58<194525
324 243 13 40 redivcli 728
325 173 13 40 redivcli 58
326 319 176 resubcli 194525
327 324 325 326 lttri 728<5858<194525728<194525
328 245 323 327 mp2an 728<194525
329 324 176 319 ltaddsubi 728+94525<1728<194525
330 328 329 mpbir 728+94525<1
331 205 330 eqbrtri 342+94525+182<1
332 1lt2 1<2
333 rplogcl 21<2log2+
334 54 332 333 mp2an log2+
335 rpgt0 log2+0<log2
336 334 335 ax-mp 0<log2
337 180 319 38 336 ltmul1ii 342+94525+182<1342+94525+182log2<1log2
338 331 337 mpbi 342+94525+182log2<1log2
339 39 mullidi 1log2=log2
340 339 eqcomi log2=1log2
341 338 166 340 3brtr4i F64<log2
342 182 341 pm3.2i F64F64<log2