Metamath Proof Explorer


Theorem bwth

Description: The glorious Bolzano-Weierstrass theorem. The first general topology theorem ever proved. The first mention of this theorem can be found in a course by Weierstrass from 1865. In his course Weierstrass called it a lemma. He didn't know how famous this theorem would be. He used a Euclidean space instead of a general compact space. And he was not aware of the Heine-Borel property. But the concepts of neighborhood and limit point were already there although not precisely defined. Cantor was one of his students. He published and used the theorem in an article from 1872. The rest of the general topology followed from that. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 15-Dec-2013) Revised by BL to significantly shorten the proof and avoid infinity, regularity, and choice. (Revised by Brendan Leahy, 26-Dec-2018)

Ref Expression
Hypothesis bwt2.1 X=J
Assertion bwth JCompAX¬AFinxXxlimPtJA

Proof

Step Hyp Ref Expression
1 bwt2.1 X=J
2 pm3.24 ¬AbFin¬AbFin
3 2 a1i bz¬AbFin¬AbFin
4 3 nrex ¬bzAbFin¬AbFin
5 r19.29 bzAbFinbz¬AbFinbzAbFin¬AbFin
6 4 5 mto ¬bzAbFinbz¬AbFin
7 6 a1i z𝒫JFin¬bzAbFinbz¬AbFin
8 7 nrex ¬z𝒫JFinbzAbFinbz¬AbFin
9 ralnex xX¬xlimPtJA¬xXxlimPtJA
10 cmptop JCompJTop
11 1 islp3 JTopAXxXxlimPtJAbJxbbAx
12 11 3expa JTopAXxXxlimPtJAbJxbbAx
13 12 notbid JTopAXxX¬xlimPtJA¬bJxbbAx
14 13 ralbidva JTopAXxX¬xlimPtJAxX¬bJxbbAx
15 10 14 sylan JCompAXxX¬xlimPtJAxX¬bJxbbAx
16 9 15 bitr3id JCompAX¬xXxlimPtJAxX¬bJxbbAx
17 rexanali bJxb¬bAx¬bJxbbAx
18 nne ¬bAxbAx=
19 vex xV
20 sneq o=xo=x
21 20 difeq2d o=xAo=Ax
22 21 ineq2d o=xbAo=bAx
23 22 eqeq1d o=xbAo=bAx=
24 19 23 spcev bAx=obAo=
25 18 24 sylbi ¬bAxobAo=
26 25 anim2i xb¬bAxxbobAo=
27 26 reximi bJxb¬bAxbJxbobAo=
28 17 27 sylbir ¬bJxbbAxbJxbobAo=
29 28 ralimi xX¬bJxbbAxxXbJxbobAo=
30 1 cmpcov2 JCompxXbJxbobAo=z𝒫JFinX=zbzobAo=
31 30 ex JCompxXbJxbobAo=z𝒫JFinX=zbzobAo=
32 29 31 syl5 JCompxX¬bJxbbAxz𝒫JFinX=zbzobAo=
33 32 adantr JCompAXxX¬bJxbbAxz𝒫JFinX=zbzobAo=
34 16 33 sylbid JCompAX¬xXxlimPtJAz𝒫JFinX=zbzobAo=
35 34 3adant3 JCompAX¬AFin¬xXxlimPtJAz𝒫JFinX=zbzobAo=
36 elinel2 z𝒫JFinzFin
37 sseq2 X=zAXAz
38 37 biimpac AXX=zAz
39 infssuni ¬AFinzFinAzbz¬AbFin
40 39 3expa ¬AFinzFinAzbz¬AbFin
41 40 ancoms Az¬AFinzFinbz¬AbFin
42 38 41 sylan AXX=z¬AFinzFinbz¬AbFin
43 42 an42s AX¬AFinzFinX=zbz¬AbFin
44 43 anassrs AX¬AFinzFinX=zbz¬AbFin
45 36 44 sylanl2 AX¬AFinz𝒫JFinX=zbz¬AbFin
46 0fin Fin
47 eleq1 bAo=bAoFinFin
48 46 47 mpbiri bAo=bAoFin
49 snfi oFin
50 unfi bAoFinoFinbAooFin
51 48 49 50 sylancl bAo=bAooFin
52 ssun1 bbo
53 ssun1 AAo
54 undif1 Aoo=Ao
55 53 54 sseqtrri AAoo
56 ss2in bboAAoobAboAoo
57 52 55 56 mp2an bAboAoo
58 incom Ab=bA
59 undir bAoo=boAoo
60 57 58 59 3sstr4i AbbAoo
61 ssfi bAooFinAbbAooAbFin
62 51 60 61 sylancl bAo=AbFin
63 62 exlimiv obAo=AbFin
64 63 ralimi bzobAo=bzAbFin
65 45 64 anim12ci AX¬AFinz𝒫JFinX=zbzobAo=bzAbFinbz¬AbFin
66 65 expl AX¬AFinz𝒫JFinX=zbzobAo=bzAbFinbz¬AbFin
67 66 reximdva AX¬AFinz𝒫JFinX=zbzobAo=z𝒫JFinbzAbFinbz¬AbFin
68 67 3adant1 JCompAX¬AFinz𝒫JFinX=zbzobAo=z𝒫JFinbzAbFinbz¬AbFin
69 35 68 syld JCompAX¬AFin¬xXxlimPtJAz𝒫JFinbzAbFinbz¬AbFin
70 8 69 mt3i JCompAX¬AFinxXxlimPtJA