Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | c1lip2.a | |
|
c1lip2.b | |
||
c1lip2.f | |
||
c1lip2.rn | |
||
c1lip2.dm | |
||
Assertion | c1lip2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1lip2.a | |
|
2 | c1lip2.b | |
|
3 | c1lip2.f | |
|
4 | c1lip2.rn | |
|
5 | c1lip2.dm | |
|
6 | ax-resscn | |
|
7 | 1nn0 | |
|
8 | elcpn | |
|
9 | 6 7 8 | mp2an | |
10 | 9 | simplbi | |
11 | 3 10 | syl | |
12 | pmfun | |
|
13 | 11 12 | syl | |
14 | 13 | funfnd | |
15 | df-f | |
|
16 | 14 4 15 | sylanbrc | |
17 | cnex | |
|
18 | reex | |
|
19 | 17 18 | elpm2 | |
20 | 19 | simprbi | |
21 | 11 20 | syl | |
22 | dvfre | |
|
23 | 16 21 22 | syl2anc | |
24 | 0p1e1 | |
|
25 | 24 | fveq2i | |
26 | 0nn0 | |
|
27 | dvnp1 | |
|
28 | 6 26 27 | mp3an13 | |
29 | 11 28 | syl | |
30 | 25 29 | eqtr3id | |
31 | dvn0 | |
|
32 | 6 11 31 | sylancr | |
33 | 32 | oveq2d | |
34 | 30 33 | eqtrd | |
35 | 9 | simprbi | |
36 | 3 35 | syl | |
37 | 34 36 | eqeltrrd | |
38 | cncff | |
|
39 | fdm | |
|
40 | 37 38 39 | 3syl | |
41 | 40 | feq2d | |
42 | 23 41 | mpbid | |
43 | cncfcdm | |
|
44 | 6 37 43 | sylancr | |
45 | 42 44 | mpbird | |
46 | rescncf | |
|
47 | 5 45 46 | sylc | |
48 | 18 | prid1 | |
49 | 1eluzge0 | |
|
50 | cpnord | |
|
51 | 48 26 49 50 | mp3an | |
52 | 51 3 | sselid | |
53 | elcpn | |
|
54 | 6 26 53 | mp2an | |
55 | 54 | simprbi | |
56 | 52 55 | syl | |
57 | 32 56 | eqeltrrd | |
58 | cncfcdm | |
|
59 | 6 57 58 | sylancr | |
60 | 16 59 | mpbird | |
61 | rescncf | |
|
62 | 5 60 61 | sylc | |
63 | 1 2 11 47 62 | c1lip1 | |