Metamath Proof Explorer


Theorem c1lip2

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses c1lip2.a φA
c1lip2.b φB
c1lip2.f φFCn1
c1lip2.rn φranF
c1lip2.dm φABdomF
Assertion c1lip2 φkxAByABFyFxkyx

Proof

Step Hyp Ref Expression
1 c1lip2.a φA
2 c1lip2.b φB
3 c1lip2.f φFCn1
4 c1lip2.rn φranF
5 c1lip2.dm φABdomF
6 ax-resscn
7 1nn0 10
8 elcpn 10FCn1F𝑝𝑚DnF1:domFcn
9 6 7 8 mp2an FCn1F𝑝𝑚DnF1:domFcn
10 9 simplbi FCn1F𝑝𝑚
11 3 10 syl φF𝑝𝑚
12 pmfun F𝑝𝑚FunF
13 11 12 syl φFunF
14 13 funfnd φFFndomF
15 df-f F:domFFFndomFranF
16 14 4 15 sylanbrc φF:domF
17 cnex V
18 reex V
19 17 18 elpm2 F𝑝𝑚F:domFdomF
20 19 simprbi F𝑝𝑚domF
21 11 20 syl φdomF
22 dvfre F:domFdomFF:domF
23 16 21 22 syl2anc φF:domF
24 0p1e1 0+1=1
25 24 fveq2i DnF0+1=DnF1
26 0nn0 00
27 dvnp1 F𝑝𝑚00DnF0+1=DDnF0
28 6 26 27 mp3an13 F𝑝𝑚DnF0+1=DDnF0
29 11 28 syl φDnF0+1=DDnF0
30 25 29 eqtr3id φDnF1=DDnF0
31 dvn0 F𝑝𝑚DnF0=F
32 6 11 31 sylancr φDnF0=F
33 32 oveq2d φDDnF0=DF
34 30 33 eqtrd φDnF1=DF
35 9 simprbi FCn1DnF1:domFcn
36 3 35 syl φDnF1:domFcn
37 34 36 eqeltrrd φF:domFcn
38 cncff F:domFcnF:domF
39 fdm F:domFdomF=domF
40 37 38 39 3syl φdomF=domF
41 40 feq2d φF:domFF:domF
42 23 41 mpbid φF:domF
43 cncfcdm F:domFcnF:domFcnF:domF
44 6 37 43 sylancr φF:domFcnF:domF
45 42 44 mpbird φF:domFcn
46 rescncf ABdomFF:domFcnFAB:ABcn
47 5 45 46 sylc φFAB:ABcn
48 18 prid1
49 1eluzge0 10
50 cpnord 0010Cn1Cn0
51 48 26 49 50 mp3an Cn1Cn0
52 51 3 sselid φFCn0
53 elcpn 00FCn0F𝑝𝑚DnF0:domFcn
54 6 26 53 mp2an FCn0F𝑝𝑚DnF0:domFcn
55 54 simprbi FCn0DnF0:domFcn
56 52 55 syl φDnF0:domFcn
57 32 56 eqeltrrd φF:domFcn
58 cncfcdm F:domFcnF:domFcnF:domF
59 6 57 58 sylancr φF:domFcnF:domF
60 16 59 mpbird φF:domFcn
61 rescncf ABdomFF:domFcnFAB:ABcn
62 5 60 61 sylc φFAB:ABcn
63 1 2 11 47 62 c1lip1 φkxAByABFyFxkyx