Metamath Proof Explorer


Theorem c1lip2

Description: C^1 functions are Lipschitz continuous on closed intervals. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypotheses c1lip2.a φ A
c1lip2.b φ B
c1lip2.f φ F C n 1
c1lip2.rn φ ran F
c1lip2.dm φ A B dom F
Assertion c1lip2 φ k x A B y A B F y F x k y x

Proof

Step Hyp Ref Expression
1 c1lip2.a φ A
2 c1lip2.b φ B
3 c1lip2.f φ F C n 1
4 c1lip2.rn φ ran F
5 c1lip2.dm φ A B dom F
6 ax-resscn
7 1nn0 1 0
8 elcpn 1 0 F C n 1 F 𝑝𝑚 D n F 1 : dom F cn
9 6 7 8 mp2an F C n 1 F 𝑝𝑚 D n F 1 : dom F cn
10 9 simplbi F C n 1 F 𝑝𝑚
11 3 10 syl φ F 𝑝𝑚
12 pmfun F 𝑝𝑚 Fun F
13 11 12 syl φ Fun F
14 13 funfnd φ F Fn dom F
15 df-f F : dom F F Fn dom F ran F
16 14 4 15 sylanbrc φ F : dom F
17 cnex V
18 reex V
19 17 18 elpm2 F 𝑝𝑚 F : dom F dom F
20 19 simprbi F 𝑝𝑚 dom F
21 11 20 syl φ dom F
22 dvfre F : dom F dom F F : dom F
23 16 21 22 syl2anc φ F : dom F
24 0p1e1 0 + 1 = 1
25 24 fveq2i D n F 0 + 1 = D n F 1
26 0nn0 0 0
27 dvnp1 F 𝑝𝑚 0 0 D n F 0 + 1 = D D n F 0
28 6 26 27 mp3an13 F 𝑝𝑚 D n F 0 + 1 = D D n F 0
29 11 28 syl φ D n F 0 + 1 = D D n F 0
30 25 29 eqtr3id φ D n F 1 = D D n F 0
31 dvn0 F 𝑝𝑚 D n F 0 = F
32 6 11 31 sylancr φ D n F 0 = F
33 32 oveq2d φ D D n F 0 = D F
34 30 33 eqtrd φ D n F 1 = D F
35 9 simprbi F C n 1 D n F 1 : dom F cn
36 3 35 syl φ D n F 1 : dom F cn
37 34 36 eqeltrrd φ F : dom F cn
38 cncff F : dom F cn F : dom F
39 fdm F : dom F dom F = dom F
40 37 38 39 3syl φ dom F = dom F
41 40 feq2d φ F : dom F F : dom F
42 23 41 mpbid φ F : dom F
43 cncffvrn F : dom F cn F : dom F cn F : dom F
44 6 37 43 sylancr φ F : dom F cn F : dom F
45 42 44 mpbird φ F : dom F cn
46 rescncf A B dom F F : dom F cn F A B : A B cn
47 5 45 46 sylc φ F A B : A B cn
48 18 prid1
49 1eluzge0 1 0
50 cpnord 0 0 1 0 C n 1 C n 0
51 48 26 49 50 mp3an C n 1 C n 0
52 51 3 sseldi φ F C n 0
53 elcpn 0 0 F C n 0 F 𝑝𝑚 D n F 0 : dom F cn
54 6 26 53 mp2an F C n 0 F 𝑝𝑚 D n F 0 : dom F cn
55 54 simprbi F C n 0 D n F 0 : dom F cn
56 52 55 syl φ D n F 0 : dom F cn
57 32 56 eqeltrrd φ F : dom F cn
58 cncffvrn F : dom F cn F : dom F cn F : dom F
59 6 57 58 sylancr φ F : dom F cn F : dom F
60 16 59 mpbird φ F : dom F cn
61 rescncf A B dom F F : dom F cn F A B : A B cn
62 5 60 61 sylc φ F A B : A B cn
63 1 2 11 47 62 c1lip1 φ k x A B y A B F y F x k y x