Metamath Proof Explorer


Theorem caucvg

Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Proof shortened by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses caucvg.1 Z=M
caucvg.2 φkZFk
caucvg.3 φx+jZkjFkFj<x
caucvg.4 φFV
Assertion caucvg φFdom

Proof

Step Hyp Ref Expression
1 caucvg.1 Z=M
2 caucvg.2 φkZFk
3 caucvg.3 φx+jZkjFkFj<x
4 caucvg.4 φFV
5 fveq2 k=nFk=Fn
6 5 cbvmptv kZFk=nZFn
7 uzssz M
8 1 7 eqsstri Z
9 zssre
10 8 9 sstri Z
11 10 a1i φZ
12 6 eqcomi nZFn=kZFk
13 2 12 fmptd φnZFn:Z
14 1rp 1+
15 14 ne0ii +
16 r19.2z +x+jZkjFkFj<xx+jZkjFkFj<x
17 15 3 16 sylancr φx+jZkjFkFj<x
18 eluzel2 jMM
19 18 1 eleq2s jZM
20 19 a1d jZkjFkFj<xM
21 20 rexlimiv jZkjFkFj<xM
22 21 rexlimivw x+jZkjFkFj<xM
23 17 22 syl φM
24 1 uzsup MsupZ*<=+∞
25 23 24 syl φsupZ*<=+∞
26 8 sseli jZj
27 8 sseli kZk
28 eluz jkkjjk
29 26 27 28 syl2an jZkZkjjk
30 29 biimprd jZkZjkkj
31 fveq2 n=kFn=Fk
32 eqid nZFn=nZFn
33 fvex FnV
34 31 32 33 fvmpt3i kZnZFnk=Fk
35 fveq2 n=jFn=Fj
36 35 32 33 fvmpt3i jZnZFnj=Fj
37 34 36 oveqan12rd jZkZnZFnknZFnj=FkFj
38 37 fveq2d jZkZnZFnknZFnj=FkFj
39 38 breq1d jZkZnZFnknZFnj<xFkFj<x
40 39 biimprd jZkZFkFj<xnZFnknZFnj<x
41 30 40 imim12d jZkZkjFkFj<xjknZFnknZFnj<x
42 41 ex jZkZkjFkFj<xjknZFnknZFnj<x
43 42 com23 jZkjFkFj<xkZjknZFnknZFnj<x
44 43 ralimdv2 jZkjFkFj<xkZjknZFnknZFnj<x
45 44 reximia jZkjFkFj<xjZkZjknZFnknZFnj<x
46 45 ralimi x+jZkjFkFj<xx+jZkZjknZFnknZFnj<x
47 3 46 syl φx+jZkZjknZFnknZFnj<x
48 11 13 25 47 caucvgr φnZFndom
49 13 25 rlimdm φnZFndomnZFnnZFn
50 48 49 mpbid φnZFnnZFn
51 6 50 eqbrtrid φkZFknZFn
52 eqid kZFk=kZFk
53 2 52 fmptd φkZFk:Z
54 1 23 53 rlimclim φkZFknZFnkZFknZFn
55 51 54 mpbid φkZFknZFn
56 1 52 climmpt MFVFnZFnkZFknZFn
57 23 4 56 syl2anc φFnZFnkZFknZFn
58 55 57 mpbird φFnZFn
59 climrel Rel
60 59 releldmi FnZFnFdom
61 58 60 syl φFdom