Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Proof shortened by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 8-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caucvg.1 | |
|
caucvg.2 | |
||
caucvg.3 | |
||
caucvg.4 | |
||
Assertion | caucvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvg.1 | |
|
2 | caucvg.2 | |
|
3 | caucvg.3 | |
|
4 | caucvg.4 | |
|
5 | fveq2 | |
|
6 | 5 | cbvmptv | |
7 | uzssz | |
|
8 | 1 7 | eqsstri | |
9 | zssre | |
|
10 | 8 9 | sstri | |
11 | 10 | a1i | |
12 | 6 | eqcomi | |
13 | 2 12 | fmptd | |
14 | 1rp | |
|
15 | 14 | ne0ii | |
16 | r19.2z | |
|
17 | 15 3 16 | sylancr | |
18 | eluzel2 | |
|
19 | 18 1 | eleq2s | |
20 | 19 | a1d | |
21 | 20 | rexlimiv | |
22 | 21 | rexlimivw | |
23 | 17 22 | syl | |
24 | 1 | uzsup | |
25 | 23 24 | syl | |
26 | 8 | sseli | |
27 | 8 | sseli | |
28 | eluz | |
|
29 | 26 27 28 | syl2an | |
30 | 29 | biimprd | |
31 | fveq2 | |
|
32 | eqid | |
|
33 | fvex | |
|
34 | 31 32 33 | fvmpt3i | |
35 | fveq2 | |
|
36 | 35 32 33 | fvmpt3i | |
37 | 34 36 | oveqan12rd | |
38 | 37 | fveq2d | |
39 | 38 | breq1d | |
40 | 39 | biimprd | |
41 | 30 40 | imim12d | |
42 | 41 | ex | |
43 | 42 | com23 | |
44 | 43 | ralimdv2 | |
45 | 44 | reximia | |
46 | 45 | ralimi | |
47 | 3 46 | syl | |
48 | 11 13 25 47 | caucvgr | |
49 | 13 25 | rlimdm | |
50 | 48 49 | mpbid | |
51 | 6 50 | eqbrtrid | |
52 | eqid | |
|
53 | 2 52 | fmptd | |
54 | 1 23 53 | rlimclim | |
55 | 51 54 | mpbid | |
56 | 1 52 | climmpt | |
57 | 23 4 56 | syl2anc | |
58 | 55 57 | mpbird | |
59 | climrel | |
|
60 | 59 | releldmi | |
61 | 58 60 | syl | |