Metamath Proof Explorer


Theorem caucvg

Description: A Cauchy sequence of complex numbers converges to a complex number. Theorem 12-5.3 of Gleason p. 180 (sufficiency part). (Contributed by NM, 20-Dec-2006) (Proof shortened by Mario Carneiro, 15-Feb-2014) (Revised by Mario Carneiro, 8-May-2016)

Ref Expression
Hypotheses caucvg.1 Z = M
caucvg.2 φ k Z F k
caucvg.3 φ x + j Z k j F k F j < x
caucvg.4 φ F V
Assertion caucvg φ F dom

Proof

Step Hyp Ref Expression
1 caucvg.1 Z = M
2 caucvg.2 φ k Z F k
3 caucvg.3 φ x + j Z k j F k F j < x
4 caucvg.4 φ F V
5 fveq2 k = n F k = F n
6 5 cbvmptv k Z F k = n Z F n
7 uzssz M
8 1 7 eqsstri Z
9 zssre
10 8 9 sstri Z
11 10 a1i φ Z
12 6 eqcomi n Z F n = k Z F k
13 2 12 fmptd φ n Z F n : Z
14 1rp 1 +
15 14 ne0ii +
16 r19.2z + x + j Z k j F k F j < x x + j Z k j F k F j < x
17 15 3 16 sylancr φ x + j Z k j F k F j < x
18 eluzel2 j M M
19 18 1 eleq2s j Z M
20 19 a1d j Z k j F k F j < x M
21 20 rexlimiv j Z k j F k F j < x M
22 21 rexlimivw x + j Z k j F k F j < x M
23 17 22 syl φ M
24 1 uzsup M sup Z * < = +∞
25 23 24 syl φ sup Z * < = +∞
26 8 sseli j Z j
27 8 sseli k Z k
28 eluz j k k j j k
29 26 27 28 syl2an j Z k Z k j j k
30 29 biimprd j Z k Z j k k j
31 fveq2 n = k F n = F k
32 eqid n Z F n = n Z F n
33 fvex F n V
34 31 32 33 fvmpt3i k Z n Z F n k = F k
35 fveq2 n = j F n = F j
36 35 32 33 fvmpt3i j Z n Z F n j = F j
37 34 36 oveqan12rd j Z k Z n Z F n k n Z F n j = F k F j
38 37 fveq2d j Z k Z n Z F n k n Z F n j = F k F j
39 38 breq1d j Z k Z n Z F n k n Z F n j < x F k F j < x
40 39 biimprd j Z k Z F k F j < x n Z F n k n Z F n j < x
41 30 40 imim12d j Z k Z k j F k F j < x j k n Z F n k n Z F n j < x
42 41 ex j Z k Z k j F k F j < x j k n Z F n k n Z F n j < x
43 42 com23 j Z k j F k F j < x k Z j k n Z F n k n Z F n j < x
44 43 ralimdv2 j Z k j F k F j < x k Z j k n Z F n k n Z F n j < x
45 44 reximia j Z k j F k F j < x j Z k Z j k n Z F n k n Z F n j < x
46 45 ralimi x + j Z k j F k F j < x x + j Z k Z j k n Z F n k n Z F n j < x
47 3 46 syl φ x + j Z k Z j k n Z F n k n Z F n j < x
48 11 13 25 47 caucvgr φ n Z F n dom
49 13 25 rlimdm φ n Z F n dom n Z F n n Z F n
50 48 49 mpbid φ n Z F n n Z F n
51 6 50 eqbrtrid φ k Z F k n Z F n
52 eqid k Z F k = k Z F k
53 2 52 fmptd φ k Z F k : Z
54 1 23 53 rlimclim φ k Z F k n Z F n k Z F k n Z F n
55 51 54 mpbid φ k Z F k n Z F n
56 1 52 climmpt M F V F n Z F n k Z F k n Z F n
57 23 4 56 syl2anc φ F n Z F n k Z F k n Z F n
58 55 57 mpbird φ F n Z F n
59 climrel Rel
60 59 releldmi F n Z F n F dom
61 58 60 syl φ F dom