Metamath Proof Explorer


Theorem caucvgrlem

Description: Lemma for caurcvgr . (Contributed by Mario Carneiro, 15-Feb-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses caurcvgr.1 φA
caurcvgr.2 φF:A
caurcvgr.3 φsupA*<=+∞
caurcvgr.4 φx+jAkAjkFkFj<x
caucvgrlem.4 φR+
Assertion caucvgrlem φjAlim supFkAjkFklim supF<3R

Proof

Step Hyp Ref Expression
1 caurcvgr.1 φA
2 caurcvgr.2 φF:A
3 caurcvgr.3 φsupA*<=+∞
4 caurcvgr.4 φx+jAkAjkFkFj<x
5 caucvgrlem.4 φR+
6 reex V
7 6 ssex AAV
8 1 7 syl φAV
9 6 a1i φV
10 fex2 F:AAVVFV
11 2 8 9 10 syl3anc φFV
12 limsupcl FVlim supF*
13 11 12 syl φlim supF*
14 13 adantr φjAkAjkFkFj<Rlim supF*
15 2 adantr φjAkAjkFkFj<RF:A
16 simprl φjAkAjkFkFj<RjA
17 15 16 ffvelcdmd φjAkAjkFkFj<RFj
18 5 rpred φR
19 18 adantr φjAkAjkFkFj<RR
20 17 19 readdcld φjAkAjkFkFj<RFj+R
21 mnfxr −∞*
22 21 a1i φjAkAjkFkFj<R−∞*
23 17 19 resubcld φjAkAjkFkFj<RFjR
24 23 rexrd φjAkAjkFkFj<RFjR*
25 23 mnfltd φjAkAjkFkFj<R−∞<FjR
26 1 adantr φjAkAjkFkFj<RA
27 ressxr *
28 fss F:A*F:A*
29 2 27 28 sylancl φF:A*
30 29 adantr φjAkAjkFkFj<RF:A*
31 3 adantr φjAkAjkFkFj<RsupA*<=+∞
32 26 16 sseldd φjAkAjkFkFj<Rj
33 simprr φjAkAjkFkFj<RkAjkFkFj<R
34 breq2 k=mjkjm
35 34 imbrov2fvoveq k=mjkFkFj<RjmFmFj<R
36 35 cbvralvw kAjkFkFj<RmAjmFmFj<R
37 33 36 sylib φjAkAjkFkFj<RmAjmFmFj<R
38 15 ffvelcdmda φjAkAjkFkFj<RmAFm
39 17 adantr φjAkAjkFkFj<RmAFj
40 38 39 resubcld φjAkAjkFkFj<RmAFmFj
41 40 recnd φjAkAjkFkFj<RmAFmFj
42 41 abscld φjAkAjkFkFj<RmAFmFj
43 19 adantr φjAkAjkFkFj<RmAR
44 ltle FmFjRFmFj<RFmFjR
45 42 43 44 syl2anc φjAkAjkFkFj<RmAFmFj<RFmFjR
46 38 39 43 absdifled φjAkAjkFkFj<RmAFmFjRFjRFmFmFj+R
47 45 46 sylibd φjAkAjkFkFj<RmAFmFj<RFjRFmFmFj+R
48 simpl FjRFmFmFj+RFjRFm
49 47 48 syl6 φjAkAjkFkFj<RmAFmFj<RFjRFm
50 49 imim2d φjAkAjkFkFj<RmAjmFmFj<RjmFjRFm
51 50 ralimdva φjAkAjkFkFj<RmAjmFmFj<RmAjmFjRFm
52 37 51 mpd φjAkAjkFkFj<RmAjmFjRFm
53 breq1 n=jnmjm
54 53 rspceaimv jmAjmFjRFmnmAnmFjRFm
55 32 52 54 syl2anc φjAkAjkFkFj<RnmAnmFjRFm
56 26 30 24 31 55 limsupbnd2 φjAkAjkFkFj<RFjRlim supF
57 22 24 14 25 56 xrltletrd φjAkAjkFkFj<R−∞<lim supF
58 20 rexrd φjAkAjkFkFj<RFj+R*
59 42 adantrr φjAkAjkFkFj<RmAjmFmFj
60 19 adantr φjAkAjkFkFj<RmAjmR
61 simprr φjAkAjkFkFj<RmAjmjm
62 simplrr φjAkAjkFkFj<RmAjmkAjkFkFj<R
63 simprl φjAkAjkFkFj<RmAjmmA
64 35 62 63 rspcdva φjAkAjkFkFj<RmAjmjmFmFj<R
65 61 64 mpd φjAkAjkFkFj<RmAjmFmFj<R
66 59 60 65 ltled φjAkAjkFkFj<RmAjmFmFjR
67 38 adantrr φjAkAjkFkFj<RmAjmFm
68 17 adantr φjAkAjkFkFj<RmAjmFj
69 67 68 60 absdifled φjAkAjkFkFj<RmAjmFmFjRFjRFmFmFj+R
70 66 69 mpbid φjAkAjkFkFj<RmAjmFjRFmFmFj+R
71 70 simprd φjAkAjkFkFj<RmAjmFmFj+R
72 71 expr φjAkAjkFkFj<RmAjmFmFj+R
73 72 ralrimiva φjAkAjkFkFj<RmAjmFmFj+R
74 53 rspceaimv jmAjmFmFj+RnmAnmFmFj+R
75 32 73 74 syl2anc φjAkAjkFkFj<RnmAnmFmFj+R
76 26 30 58 75 limsupbnd1 φjAkAjkFkFj<Rlim supFFj+R
77 xrre lim supF*Fj+R−∞<lim supFlim supFFj+Rlim supF
78 14 20 57 76 77 syl22anc φjAkAjkFkFj<Rlim supF
79 78 adantr φjAkAjkFkFj<RmAjmlim supF
80 67 79 resubcld φjAkAjkFkFj<RmAjmFmlim supF
81 80 recnd φjAkAjkFkFj<RmAjmFmlim supF
82 81 abscld φjAkAjkFkFj<RmAjmFmlim supF
83 2re 2
84 remulcl 2R2R
85 83 60 84 sylancr φjAkAjkFkFj<RmAjm2R
86 3re 3
87 remulcl 3R3R
88 86 60 87 sylancr φjAkAjkFkFj<RmAjm3R
89 67 recnd φjAkAjkFkFj<RmAjmFm
90 79 recnd φjAkAjkFkFj<RmAjmlim supF
91 89 90 abssubd φjAkAjkFkFj<RmAjmFmlim supF=lim supFFm
92 67 85 resubcld φjAkAjkFkFj<RmAjmFm2R
93 23 adantr φjAkAjkFkFj<RmAjmFjR
94 60 recnd φjAkAjkFkFj<RmAjmR
95 94 2timesd φjAkAjkFkFj<RmAjm2R=R+R
96 95 oveq2d φjAkAjkFkFj<RmAjmFm2R=FmR+R
97 89 94 94 subsub4d φjAkAjkFkFj<RmAjmFm-R-R=FmR+R
98 96 97 eqtr4d φjAkAjkFkFj<RmAjmFm2R=Fm-R-R
99 67 60 resubcld φjAkAjkFkFj<RmAjmFmR
100 67 60 68 lesubaddd φjAkAjkFkFj<RmAjmFmRFjFmFj+R
101 71 100 mpbird φjAkAjkFkFj<RmAjmFmRFj
102 99 68 60 101 lesub1dd φjAkAjkFkFj<RmAjmFm-R-RFjR
103 98 102 eqbrtrd φjAkAjkFkFj<RmAjmFm2RFjR
104 56 adantr φjAkAjkFkFj<RmAjmFjRlim supF
105 92 93 79 103 104 letrd φjAkAjkFkFj<RmAjmFm2Rlim supF
106 20 adantr φjAkAjkFkFj<RmAjmFj+R
107 67 85 readdcld φjAkAjkFkFj<RmAjmFm+2R
108 76 adantr φjAkAjkFkFj<RmAjmlim supFFj+R
109 67 60 readdcld φjAkAjkFkFj<RmAjmFm+R
110 70 48 syl φjAkAjkFkFj<RmAjmFjRFm
111 68 60 67 lesubaddd φjAkAjkFkFj<RmAjmFjRFmFjFm+R
112 110 111 mpbid φjAkAjkFkFj<RmAjmFjFm+R
113 68 109 60 112 leadd1dd φjAkAjkFkFj<RmAjmFj+RFm+R+R
114 89 94 94 addassd φjAkAjkFkFj<RmAjmFm+R+R=Fm+R+R
115 95 oveq2d φjAkAjkFkFj<RmAjmFm+2R=Fm+R+R
116 114 115 eqtr4d φjAkAjkFkFj<RmAjmFm+R+R=Fm+2R
117 113 116 breqtrd φjAkAjkFkFj<RmAjmFj+RFm+2R
118 79 106 107 108 117 letrd φjAkAjkFkFj<RmAjmlim supFFm+2R
119 79 67 85 absdifled φjAkAjkFkFj<RmAjmlim supFFm2RFm2Rlim supFlim supFFm+2R
120 105 118 119 mpbir2and φjAkAjkFkFj<RmAjmlim supFFm2R
121 91 120 eqbrtrd φjAkAjkFkFj<RmAjmFmlim supF2R
122 2lt3 2<3
123 83 a1i φjAkAjkFkFj<RmAjm2
124 86 a1i φjAkAjkFkFj<RmAjm3
125 5 adantr φjAkAjkFkFj<RR+
126 125 adantr φjAkAjkFkFj<RmAjmR+
127 123 124 126 ltmul1d φjAkAjkFkFj<RmAjm2<32R<3R
128 122 127 mpbii φjAkAjkFkFj<RmAjm2R<3R
129 82 85 88 121 128 lelttrd φjAkAjkFkFj<RmAjmFmlim supF<3R
130 129 expr φjAkAjkFkFj<RmAjmFmlim supF<3R
131 130 ralrimiva φjAkAjkFkFj<RmAjmFmlim supF<3R
132 34 imbrov2fvoveq k=mjkFklim supF<3RjmFmlim supF<3R
133 132 cbvralvw kAjkFklim supF<3RmAjmFmlim supF<3R
134 131 133 sylibr φjAkAjkFkFj<RkAjkFklim supF<3R
135 78 134 jca φjAkAjkFkFj<Rlim supFkAjkFklim supF<3R
136 breq2 x=RFkFj<xFkFj<R
137 136 imbi2d x=RjkFkFj<xjkFkFj<R
138 137 rexralbidv x=RjAkAjkFkFj<xjAkAjkFkFj<R
139 138 4 5 rspcdva φjAkAjkFkFj<R
140 135 139 reximddv φjAlim supFkAjkFklim supF<3R