Database
REAL AND COMPLEX NUMBERS
Words over a set
Concatenations of words
ccatass
Next ⟩
ccatrn
Metamath Proof Explorer
Ascii
Unicode
Theorem
ccatass
Description:
Associative law for concatenation of words.
(Contributed by
Stefan O'Rear
, 15-Aug-2015)
Ref
Expression
Assertion
ccatass
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
++
T
++
U
Proof
Step
Hyp
Ref
Expression
1
ccatcl
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
++
T
∈
Word
B
2
ccatcl
⊢
S
++
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
∈
Word
B
3
1
2
stoic3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
∈
Word
B
4
wrdfn
⊢
S
++
T
++
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
5
3
4
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
6
ccatlen
⊢
S
++
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
++
T
+
U
7
1
6
stoic3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
++
T
+
U
8
ccatlen
⊢
S
∈
Word
B
∧
T
∈
Word
B
→
S
++
T
=
S
+
T
9
8
3adant3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
=
S
+
T
10
9
oveq1d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
+
U
=
S
+
T
+
U
11
7
10
eqtrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
+
T
+
U
12
11
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
0
..^
S
++
T
++
U
=
0
..^
S
+
T
+
U
13
12
fneq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
↔
S
++
T
++
U
Fn
0
..^
S
+
T
+
U
14
5
13
mpbid
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
+
T
+
U
15
simp1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
Word
B
16
ccatcl
⊢
T
∈
Word
B
∧
U
∈
Word
B
→
T
++
U
∈
Word
B
17
16
3adant1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
++
U
∈
Word
B
18
ccatcl
⊢
S
∈
Word
B
∧
T
++
U
∈
Word
B
→
S
++
T
++
U
∈
Word
B
19
15
17
18
syl2anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
∈
Word
B
20
wrdfn
⊢
S
++
T
++
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
21
19
20
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
22
ccatlen
⊢
T
∈
Word
B
∧
U
∈
Word
B
→
T
++
U
=
T
+
U
23
22
3adant1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
++
U
=
T
+
U
24
23
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
++
U
=
S
+
T
+
U
25
ccatlen
⊢
S
∈
Word
B
∧
T
++
U
∈
Word
B
→
S
++
T
++
U
=
S
+
T
++
U
26
15
17
25
syl2anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
+
T
++
U
27
lencl
⊢
S
∈
Word
B
→
S
∈
ℕ
0
28
27
3ad2ant1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
ℕ
0
29
28
nn0cnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
ℂ
30
lencl
⊢
T
∈
Word
B
→
T
∈
ℕ
0
31
30
3ad2ant2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
∈
ℕ
0
32
31
nn0cnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
∈
ℂ
33
lencl
⊢
U
∈
Word
B
→
U
∈
ℕ
0
34
33
3ad2ant3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
U
∈
ℕ
0
35
34
nn0cnd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
U
∈
ℂ
36
29
32
35
addassd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
+
U
=
S
+
T
+
U
37
24
26
36
3eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
+
T
+
U
38
37
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
0
..^
S
++
T
++
U
=
0
..^
S
+
T
+
U
39
38
fneq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
++
T
++
U
↔
S
++
T
++
U
Fn
0
..^
S
+
T
+
U
40
21
39
mpbid
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
Fn
0
..^
S
+
T
+
U
41
28
nn0zd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
ℤ
42
fzospliti
⊢
x
∈
0
..^
S
+
T
+
U
∧
S
∈
ℤ
→
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
+
U
43
42
ex
⊢
x
∈
0
..^
S
+
T
+
U
→
S
∈
ℤ
→
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
+
U
44
41
43
mpan9
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
+
T
+
U
→
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
+
U
45
simp2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
∈
Word
B
46
id
⊢
x
∈
0
..^
S
→
x
∈
0
..^
S
47
ccatval1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
=
S
x
48
15
45
46
47
syl2an3an
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
x
=
S
x
49
1
3adant3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
∈
Word
B
50
49
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
∈
Word
B
51
simpl3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
U
∈
Word
B
52
41
uzidd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
ℤ
≥
S
53
uzaddcl
⊢
S
∈
ℤ
≥
S
∧
T
∈
ℕ
0
→
S
+
T
∈
ℤ
≥
S
54
52
31
53
syl2anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
∈
ℤ
≥
S
55
fzoss2
⊢
S
+
T
∈
ℤ
≥
S
→
0
..^
S
⊆
0
..^
S
+
T
56
54
55
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
0
..^
S
⊆
0
..^
S
+
T
57
9
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
0
..^
S
++
T
=
0
..^
S
+
T
58
56
57
sseqtrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
0
..^
S
⊆
0
..^
S
++
T
59
58
sselda
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
x
∈
0
..^
S
++
T
60
ccatval1
⊢
S
++
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
++
T
→
S
++
T
++
U
x
=
S
++
T
x
61
50
51
59
60
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
++
U
x
=
S
++
T
x
62
ccatval1
⊢
S
∈
Word
B
∧
T
++
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
++
U
x
=
S
x
63
15
17
46
62
syl2an3an
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
++
U
x
=
S
x
64
48
61
63
3eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
→
S
++
T
++
U
x
=
S
++
T
++
U
x
65
31
nn0zd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
∈
ℤ
66
41
65
zaddcld
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
∈
ℤ
67
fzospliti
⊢
x
∈
S
..^
S
+
T
+
U
∧
S
+
T
∈
ℤ
→
x
∈
S
..^
S
+
T
∨
x
∈
S
+
T
..^
S
+
T
+
U
68
67
ex
⊢
x
∈
S
..^
S
+
T
+
U
→
S
+
T
∈
ℤ
→
x
∈
S
..^
S
+
T
∨
x
∈
S
+
T
..^
S
+
T
+
U
69
66
68
mpan9
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
+
U
→
x
∈
S
..^
S
+
T
∨
x
∈
S
+
T
..^
S
+
T
+
U
70
id
⊢
x
∈
S
..^
S
+
T
→
x
∈
S
..^
S
+
T
71
ccatval2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
=
T
x
−
S
72
15
45
70
71
syl2an3an
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
=
T
x
−
S
73
simpl2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
∈
Word
B
74
simpl3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
U
∈
Word
B
75
fzosubel3
⊢
x
∈
S
..^
S
+
T
∧
T
∈
ℤ
→
x
−
S
∈
0
..^
T
76
75
ex
⊢
x
∈
S
..^
S
+
T
→
T
∈
ℤ
→
x
−
S
∈
0
..^
T
77
65
76
mpan9
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
−
S
∈
0
..^
T
78
ccatval1
⊢
T
∈
Word
B
∧
U
∈
Word
B
∧
x
−
S
∈
0
..^
T
→
T
++
U
x
−
S
=
T
x
−
S
79
73
74
77
78
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
++
U
x
−
S
=
T
x
−
S
80
72
79
eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
x
=
T
++
U
x
−
S
81
49
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
∈
Word
B
82
fzoss1
⊢
S
∈
ℤ
≥
0
→
S
..^
S
+
T
⊆
0
..^
S
+
T
83
nn0uz
⊢
ℕ
0
=
ℤ
≥
0
84
82
83
eleq2s
⊢
S
∈
ℕ
0
→
S
..^
S
+
T
⊆
0
..^
S
+
T
85
28
84
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
..^
S
+
T
⊆
0
..^
S
+
T
86
85
57
sseqtrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
..^
S
+
T
⊆
0
..^
S
++
T
87
86
sselda
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
∈
0
..^
S
++
T
88
81
74
87
60
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
++
U
x
=
S
++
T
x
89
simpl1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
∈
Word
B
90
17
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
T
++
U
∈
Word
B
91
66
uzidd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
∈
ℤ
≥
S
+
T
92
uzaddcl
⊢
S
+
T
∈
ℤ
≥
S
+
T
∧
U
∈
ℕ
0
→
S
+
T
+
U
∈
ℤ
≥
S
+
T
93
91
34
92
syl2anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
+
U
∈
ℤ
≥
S
+
T
94
fzoss2
⊢
S
+
T
+
U
∈
ℤ
≥
S
+
T
→
S
..^
S
+
T
⊆
S
..^
S
+
T
+
U
95
93
94
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
..^
S
+
T
⊆
S
..^
S
+
T
+
U
96
24
36
eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
++
U
=
S
+
T
+
U
97
96
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
..^
S
+
T
++
U
=
S
..^
S
+
T
+
U
98
95
97
sseqtrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
..^
S
+
T
⊆
S
..^
S
+
T
++
U
99
98
sselda
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
x
∈
S
..^
S
+
T
++
U
100
ccatval2
⊢
S
∈
Word
B
∧
T
++
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
++
U
→
S
++
T
++
U
x
=
T
++
U
x
−
S
101
89
90
99
100
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
++
U
x
=
T
++
U
x
−
S
102
80
88
101
3eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
→
S
++
T
++
U
x
=
S
++
T
++
U
x
103
9
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
x
−
S
++
T
=
x
−
S
+
T
104
103
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
−
S
++
T
=
x
−
S
+
T
105
elfzoelz
⊢
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
ℤ
106
105
zcnd
⊢
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
ℂ
107
106
adantl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
ℂ
108
29
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
∈
ℂ
109
32
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
T
∈
ℂ
110
107
108
109
subsub4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
-
S
-
T
=
x
−
S
+
T
111
104
110
eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
−
S
++
T
=
x
-
S
-
T
112
111
fveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
U
x
−
S
++
T
=
U
x
-
S
-
T
113
simpl2
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
T
∈
Word
B
114
simpl3
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
U
∈
Word
B
115
36
oveq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
..^
S
+
T
+
U
=
S
+
T
..^
S
+
T
+
U
116
115
eleq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
x
∈
S
+
T
..^
S
+
T
+
U
↔
x
∈
S
+
T
..^
S
+
T
+
U
117
116
biimpa
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
S
+
T
..^
S
+
T
+
U
118
34
nn0zd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
U
∈
ℤ
119
65
118
zaddcld
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
T
+
U
∈
ℤ
120
41
65
119
3jca
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
∈
ℤ
∧
T
∈
ℤ
∧
T
+
U
∈
ℤ
121
120
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
∈
ℤ
∧
T
∈
ℤ
∧
T
+
U
∈
ℤ
122
fzosubel2
⊢
x
∈
S
+
T
..^
S
+
T
+
U
∧
S
∈
ℤ
∧
T
∈
ℤ
∧
T
+
U
∈
ℤ
→
x
−
S
∈
T
..^
T
+
U
123
117
121
122
syl2anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
−
S
∈
T
..^
T
+
U
124
ccatval2
⊢
T
∈
Word
B
∧
U
∈
Word
B
∧
x
−
S
∈
T
..^
T
+
U
→
T
++
U
x
−
S
=
U
x
-
S
-
T
125
113
114
123
124
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
T
++
U
x
−
S
=
U
x
-
S
-
T
126
112
125
eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
U
x
−
S
++
T
=
T
++
U
x
−
S
127
49
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
++
T
∈
Word
B
128
9
10
oveq12d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
..^
S
++
T
+
U
=
S
+
T
..^
S
+
T
+
U
129
128
eleq2d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
x
∈
S
++
T
..^
S
++
T
+
U
↔
x
∈
S
+
T
..^
S
+
T
+
U
130
129
biimpar
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
S
++
T
..^
S
++
T
+
U
131
ccatval2
⊢
S
++
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
++
T
..^
S
++
T
+
U
→
S
++
T
++
U
x
=
U
x
−
S
++
T
132
127
114
130
131
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
U
x
−
S
++
T
133
simpl1
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
∈
Word
B
134
17
adantr
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
T
++
U
∈
Word
B
135
fzoss1
⊢
S
+
T
∈
ℤ
≥
S
→
S
+
T
..^
S
+
T
+
U
⊆
S
..^
S
+
T
+
U
136
54
135
syl
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
..^
S
+
T
+
U
⊆
S
..^
S
+
T
+
U
137
136
97
sseqtrrd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
+
T
..^
S
+
T
+
U
⊆
S
..^
S
+
T
++
U
138
137
sselda
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
x
∈
S
..^
S
+
T
++
U
139
133
134
138
100
syl3anc
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
T
++
U
x
−
S
140
126
132
139
3eqtr4d
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
+
T
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
S
++
T
++
U
x
141
102
140
jaodan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
∨
x
∈
S
+
T
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
S
++
T
++
U
x
142
69
141
syldan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
S
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
S
++
T
++
U
x
143
64
142
jaodan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
∨
x
∈
S
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
S
++
T
++
U
x
144
44
143
syldan
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
∧
x
∈
0
..^
S
+
T
+
U
→
S
++
T
++
U
x
=
S
++
T
++
U
x
145
14
40
144
eqfnfvd
⊢
S
∈
Word
B
∧
T
∈
Word
B
∧
U
∈
Word
B
→
S
++
T
++
U
=
S
++
T
++
U