| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ccatcl |
|
| 2 |
|
ccatcl |
|
| 3 |
1 2
|
stoic3 |
|
| 4 |
|
wrdfn |
|
| 5 |
3 4
|
syl |
|
| 6 |
|
ccatlen |
|
| 7 |
1 6
|
stoic3 |
|
| 8 |
|
ccatlen |
|
| 9 |
8
|
3adant3 |
|
| 10 |
9
|
oveq1d |
|
| 11 |
7 10
|
eqtrd |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
fneq2d |
|
| 14 |
5 13
|
mpbid |
|
| 15 |
|
simp1 |
|
| 16 |
|
ccatcl |
|
| 17 |
16
|
3adant1 |
|
| 18 |
|
ccatcl |
|
| 19 |
15 17 18
|
syl2anc |
|
| 20 |
|
wrdfn |
|
| 21 |
19 20
|
syl |
|
| 22 |
|
ccatlen |
|
| 23 |
22
|
3adant1 |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
ccatlen |
|
| 26 |
15 17 25
|
syl2anc |
|
| 27 |
|
lencl |
|
| 28 |
27
|
3ad2ant1 |
|
| 29 |
28
|
nn0cnd |
|
| 30 |
|
lencl |
|
| 31 |
30
|
3ad2ant2 |
|
| 32 |
31
|
nn0cnd |
|
| 33 |
|
lencl |
|
| 34 |
33
|
3ad2ant3 |
|
| 35 |
34
|
nn0cnd |
|
| 36 |
29 32 35
|
addassd |
|
| 37 |
24 26 36
|
3eqtr4d |
|
| 38 |
37
|
oveq2d |
|
| 39 |
38
|
fneq2d |
|
| 40 |
21 39
|
mpbid |
|
| 41 |
28
|
nn0zd |
|
| 42 |
|
fzospliti |
|
| 43 |
42
|
ex |
|
| 44 |
41 43
|
mpan9 |
|
| 45 |
|
simp2 |
|
| 46 |
|
id |
|
| 47 |
|
ccatval1 |
|
| 48 |
15 45 46 47
|
syl2an3an |
|
| 49 |
1
|
3adant3 |
|
| 50 |
49
|
adantr |
|
| 51 |
|
simpl3 |
|
| 52 |
41
|
uzidd |
|
| 53 |
|
uzaddcl |
|
| 54 |
52 31 53
|
syl2anc |
|
| 55 |
|
fzoss2 |
|
| 56 |
54 55
|
syl |
|
| 57 |
9
|
oveq2d |
|
| 58 |
56 57
|
sseqtrrd |
|
| 59 |
58
|
sselda |
|
| 60 |
|
ccatval1 |
|
| 61 |
50 51 59 60
|
syl3anc |
|
| 62 |
|
ccatval1 |
|
| 63 |
15 17 46 62
|
syl2an3an |
|
| 64 |
48 61 63
|
3eqtr4d |
|
| 65 |
31
|
nn0zd |
|
| 66 |
41 65
|
zaddcld |
|
| 67 |
|
fzospliti |
|
| 68 |
67
|
ex |
|
| 69 |
66 68
|
mpan9 |
|
| 70 |
|
id |
|
| 71 |
|
ccatval2 |
|
| 72 |
15 45 70 71
|
syl2an3an |
|
| 73 |
|
simpl2 |
|
| 74 |
|
simpl3 |
|
| 75 |
|
fzosubel3 |
|
| 76 |
75
|
ex |
|
| 77 |
65 76
|
mpan9 |
|
| 78 |
|
ccatval1 |
|
| 79 |
73 74 77 78
|
syl3anc |
|
| 80 |
72 79
|
eqtr4d |
|
| 81 |
49
|
adantr |
|
| 82 |
|
fzoss1 |
|
| 83 |
|
nn0uz |
|
| 84 |
82 83
|
eleq2s |
|
| 85 |
28 84
|
syl |
|
| 86 |
85 57
|
sseqtrrd |
|
| 87 |
86
|
sselda |
|
| 88 |
81 74 87 60
|
syl3anc |
|
| 89 |
|
simpl1 |
|
| 90 |
17
|
adantr |
|
| 91 |
66
|
uzidd |
|
| 92 |
|
uzaddcl |
|
| 93 |
91 34 92
|
syl2anc |
|
| 94 |
|
fzoss2 |
|
| 95 |
93 94
|
syl |
|
| 96 |
24 36
|
eqtr4d |
|
| 97 |
96
|
oveq2d |
|
| 98 |
95 97
|
sseqtrrd |
|
| 99 |
98
|
sselda |
|
| 100 |
|
ccatval2 |
|
| 101 |
89 90 99 100
|
syl3anc |
|
| 102 |
80 88 101
|
3eqtr4d |
|
| 103 |
9
|
oveq2d |
|
| 104 |
103
|
adantr |
|
| 105 |
|
elfzoelz |
|
| 106 |
105
|
zcnd |
|
| 107 |
106
|
adantl |
|
| 108 |
29
|
adantr |
|
| 109 |
32
|
adantr |
|
| 110 |
107 108 109
|
subsub4d |
|
| 111 |
104 110
|
eqtr4d |
|
| 112 |
111
|
fveq2d |
|
| 113 |
|
simpl2 |
|
| 114 |
|
simpl3 |
|
| 115 |
36
|
oveq2d |
|
| 116 |
115
|
eleq2d |
|
| 117 |
116
|
biimpa |
|
| 118 |
34
|
nn0zd |
|
| 119 |
65 118
|
zaddcld |
|
| 120 |
41 65 119
|
3jca |
|
| 121 |
120
|
adantr |
|
| 122 |
|
fzosubel2 |
|
| 123 |
117 121 122
|
syl2anc |
|
| 124 |
|
ccatval2 |
|
| 125 |
113 114 123 124
|
syl3anc |
|
| 126 |
112 125
|
eqtr4d |
|
| 127 |
49
|
adantr |
|
| 128 |
9 10
|
oveq12d |
|
| 129 |
128
|
eleq2d |
|
| 130 |
129
|
biimpar |
|
| 131 |
|
ccatval2 |
|
| 132 |
127 114 130 131
|
syl3anc |
|
| 133 |
|
simpl1 |
|
| 134 |
17
|
adantr |
|
| 135 |
|
fzoss1 |
|
| 136 |
54 135
|
syl |
|
| 137 |
136 97
|
sseqtrrd |
|
| 138 |
137
|
sselda |
|
| 139 |
133 134 138 100
|
syl3anc |
|
| 140 |
126 132 139
|
3eqtr4d |
|
| 141 |
102 140
|
jaodan |
|
| 142 |
69 141
|
syldan |
|
| 143 |
64 142
|
jaodan |
|
| 144 |
44 143
|
syldan |
|
| 145 |
14 40 144
|
eqfnfvd |
|