| Step |
Hyp |
Ref |
Expression |
| 1 |
|
chp0mat.c |
|
| 2 |
|
chp0mat.p |
|
| 3 |
|
chp0mat.a |
|
| 4 |
|
chp0mat.x |
|
| 5 |
|
chp0mat.g |
|
| 6 |
|
chp0mat.m |
|
| 7 |
|
chp0mat.0 |
|
| 8 |
|
simpl |
|
| 9 |
|
simpr |
|
| 10 |
|
crngring |
|
| 11 |
3
|
matring |
|
| 12 |
10 11
|
sylan2 |
|
| 13 |
|
ringgrp |
|
| 14 |
|
eqid |
|
| 15 |
14 7
|
grpidcl |
|
| 16 |
12 13 15
|
3syl |
|
| 17 |
|
eqid |
|
| 18 |
3 17
|
mat0op |
|
| 19 |
7 18
|
eqtrid |
|
| 20 |
10 19
|
sylan2 |
|
| 21 |
20
|
adantr |
|
| 22 |
|
eqidd |
|
| 23 |
|
simpl |
|
| 24 |
23
|
adantl |
|
| 25 |
|
simpr |
|
| 26 |
25
|
adantl |
|
| 27 |
|
fvexd |
|
| 28 |
21 22 24 26 27
|
ovmpod |
|
| 29 |
28
|
a1d |
|
| 30 |
29
|
ralrimivva |
|
| 31 |
|
eqid |
|
| 32 |
|
eqid |
|
| 33 |
1 2 3 31 14 4 17 5 32
|
chpdmat |
|
| 34 |
8 9 16 30 33
|
syl31anc |
|
| 35 |
20
|
adantr |
|
| 36 |
|
eqidd |
|
| 37 |
|
simpr |
|
| 38 |
|
fvexd |
|
| 39 |
35 36 37 37 38
|
ovmpod |
|
| 40 |
39
|
fveq2d |
|
| 41 |
10
|
adantl |
|
| 42 |
|
eqid |
|
| 43 |
2 31 17 42
|
ply1scl0 |
|
| 44 |
41 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
40 45
|
eqtrd |
|
| 47 |
46
|
oveq2d |
|
| 48 |
2
|
ply1ring |
|
| 49 |
|
ringgrp |
|
| 50 |
10 48 49
|
3syl |
|
| 51 |
50
|
adantl |
|
| 52 |
|
eqid |
|
| 53 |
4 2 52
|
vr1cl |
|
| 54 |
41 53
|
syl |
|
| 55 |
51 54
|
jca |
|
| 56 |
55
|
adantr |
|
| 57 |
52 42 32
|
grpsubid1 |
|
| 58 |
56 57
|
syl |
|
| 59 |
47 58
|
eqtrd |
|
| 60 |
59
|
mpteq2dva |
|
| 61 |
60
|
oveq2d |
|
| 62 |
2
|
ply1crng |
|
| 63 |
5
|
crngmgp |
|
| 64 |
|
cmnmnd |
|
| 65 |
62 63 64
|
3syl |
|
| 66 |
65
|
adantl |
|
| 67 |
10 53
|
syl |
|
| 68 |
67
|
adantl |
|
| 69 |
5 52
|
mgpbas |
|
| 70 |
68 69
|
eleqtrdi |
|
| 71 |
|
eqid |
|
| 72 |
71 6
|
gsumconst |
|
| 73 |
66 8 70 72
|
syl3anc |
|
| 74 |
34 61 73
|
3eqtrd |
|