Metamath Proof Explorer


Theorem chp0mat

Description: The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019)

Ref Expression
Hypotheses chp0mat.c C=NCharPlyMatR
chp0mat.p P=Poly1R
chp0mat.a A=NMatR
chp0mat.x X=var1R
chp0mat.g G=mulGrpP
chp0mat.m ×˙=G
chp0mat.0 0˙=0A
Assertion chp0mat NFinRCRingC0˙=N×˙X

Proof

Step Hyp Ref Expression
1 chp0mat.c C=NCharPlyMatR
2 chp0mat.p P=Poly1R
3 chp0mat.a A=NMatR
4 chp0mat.x X=var1R
5 chp0mat.g G=mulGrpP
6 chp0mat.m ×˙=G
7 chp0mat.0 0˙=0A
8 simpl NFinRCRingNFin
9 simpr NFinRCRingRCRing
10 crngring RCRingRRing
11 3 matring NFinRRingARing
12 10 11 sylan2 NFinRCRingARing
13 ringgrp ARingAGrp
14 eqid BaseA=BaseA
15 14 7 grpidcl AGrp0˙BaseA
16 12 13 15 3syl NFinRCRing0˙BaseA
17 eqid 0R=0R
18 3 17 mat0op NFinRRing0A=xN,yN0R
19 7 18 eqtrid NFinRRing0˙=xN,yN0R
20 10 19 sylan2 NFinRCRing0˙=xN,yN0R
21 20 adantr NFinRCRingiNjN0˙=xN,yN0R
22 eqidd NFinRCRingiNjNx=iy=j0R=0R
23 simpl iNjNiN
24 23 adantl NFinRCRingiNjNiN
25 simpr iNjNjN
26 25 adantl NFinRCRingiNjNjN
27 fvexd NFinRCRingiNjN0RV
28 21 22 24 26 27 ovmpod NFinRCRingiNjNi0˙j=0R
29 28 a1d NFinRCRingiNjNiji0˙j=0R
30 29 ralrimivva NFinRCRingiNjNiji0˙j=0R
31 eqid algScP=algScP
32 eqid -P=-P
33 1 2 3 31 14 4 17 5 32 chpdmat NFinRCRing0˙BaseAiNjNiji0˙j=0RC0˙=GkNX-PalgScPk0˙k
34 8 9 16 30 33 syl31anc NFinRCRingC0˙=GkNX-PalgScPk0˙k
35 20 adantr NFinRCRingkN0˙=xN,yN0R
36 eqidd NFinRCRingkNx=ky=k0R=0R
37 simpr NFinRCRingkNkN
38 fvexd NFinRCRingkN0RV
39 35 36 37 37 38 ovmpod NFinRCRingkNk0˙k=0R
40 39 fveq2d NFinRCRingkNalgScPk0˙k=algScP0R
41 10 adantl NFinRCRingRRing
42 eqid 0P=0P
43 2 31 17 42 ply1scl0 RRingalgScP0R=0P
44 41 43 syl NFinRCRingalgScP0R=0P
45 44 adantr NFinRCRingkNalgScP0R=0P
46 40 45 eqtrd NFinRCRingkNalgScPk0˙k=0P
47 46 oveq2d NFinRCRingkNX-PalgScPk0˙k=X-P0P
48 2 ply1ring RRingPRing
49 ringgrp PRingPGrp
50 10 48 49 3syl RCRingPGrp
51 50 adantl NFinRCRingPGrp
52 eqid BaseP=BaseP
53 4 2 52 vr1cl RRingXBaseP
54 41 53 syl NFinRCRingXBaseP
55 51 54 jca NFinRCRingPGrpXBaseP
56 55 adantr NFinRCRingkNPGrpXBaseP
57 52 42 32 grpsubid1 PGrpXBasePX-P0P=X
58 56 57 syl NFinRCRingkNX-P0P=X
59 47 58 eqtrd NFinRCRingkNX-PalgScPk0˙k=X
60 59 mpteq2dva NFinRCRingkNX-PalgScPk0˙k=kNX
61 60 oveq2d NFinRCRingGkNX-PalgScPk0˙k=GkNX
62 2 ply1crng RCRingPCRing
63 5 crngmgp PCRingGCMnd
64 cmnmnd GCMndGMnd
65 62 63 64 3syl RCRingGMnd
66 65 adantl NFinRCRingGMnd
67 10 53 syl RCRingXBaseP
68 67 adantl NFinRCRingXBaseP
69 5 52 mgpbas BaseP=BaseG
70 68 69 eleqtrdi NFinRCRingXBaseG
71 eqid BaseG=BaseG
72 71 6 gsumconst GMndNFinXBaseGGkNX=N×˙X
73 66 8 70 72 syl3anc NFinRCRingGkNX=N×˙X
74 34 61 73 3eqtrd NFinRCRingC0˙=N×˙X