Metamath Proof Explorer


Theorem clwlkclwwlkfo

Description: F is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018) (Revised by AV, 2-May-2021) (Revised by AV, 29-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlkf.c C=wClWalksG|11stw
clwlkclwwlkf.f F=cC2ndcprefix2ndc1
Assertion clwlkclwwlkfo GUSHGraphF:ContoClWWalksG

Proof

Step Hyp Ref Expression
1 clwlkclwwlkf.c C=wClWalksG|11stw
2 clwlkclwwlkf.f F=cC2ndcprefix2ndc1
3 1 2 clwlkclwwlkf GUSHGraphF:CClWWalksG
4 clwwlkgt0 wClWWalksG0<w
5 eqid VtxG=VtxG
6 5 clwwlkbp wClWWalksGGVwWordVtxGw
7 lencl wWordVtxGw0
8 7 nn0zd wWordVtxGw
9 zgt0ge1 w0<w1w
10 8 9 syl wWordVtxG0<w1w
11 10 biimpd wWordVtxG0<w1w
12 11 anc2li wWordVtxG0<wwWordVtxG1w
13 12 3ad2ant2 GVwWordVtxGw0<wwWordVtxG1w
14 6 13 syl wClWWalksG0<wwWordVtxG1w
15 4 14 mpd wClWWalksGwWordVtxG1w
16 15 adantl GUSHGraphwClWWalksGwWordVtxG1w
17 eqid iEdgG=iEdgG
18 5 17 clwlkclwwlk2 GUSHGraphwWordVtxG1wffClWalksGw++⟨“w0”⟩wClWWalksG
19 df-br fClWalksGw++⟨“w0”⟩fw++⟨“w0”⟩ClWalksG
20 simpr2 fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wwWordVtxG
21 simpr3 fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1w1w
22 simpl fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wfw++⟨“w0”⟩ClWalksG
23 1 clwlkclwwlkfolem wWordVtxG1wfw++⟨“w0”⟩ClWalksGfw++⟨“w0”⟩C
24 20 21 22 23 syl3anc fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wfw++⟨“w0”⟩C
25 23 3expa wWordVtxG1wfw++⟨“w0”⟩ClWalksGfw++⟨“w0”⟩C
26 ovex w++⟨“w0”⟩prefixw++⟨“w0”⟩1V
27 fveq2 c=fw++⟨“w0”⟩2ndc=2ndfw++⟨“w0”⟩
28 2fveq3 c=fw++⟨“w0”⟩2ndc=2ndfw++⟨“w0”⟩
29 28 oveq1d c=fw++⟨“w0”⟩2ndc1=2ndfw++⟨“w0”⟩1
30 27 29 oveq12d c=fw++⟨“w0”⟩2ndcprefix2ndc1=2ndfw++⟨“w0”⟩prefix2ndfw++⟨“w0”⟩1
31 vex fV
32 ovex w++⟨“w0”⟩V
33 31 32 op2nd 2ndfw++⟨“w0”⟩=w++⟨“w0”⟩
34 33 fveq2i 2ndfw++⟨“w0”⟩=w++⟨“w0”⟩
35 34 oveq1i 2ndfw++⟨“w0”⟩1=w++⟨“w0”⟩1
36 33 35 oveq12i 2ndfw++⟨“w0”⟩prefix2ndfw++⟨“w0”⟩1=w++⟨“w0”⟩prefixw++⟨“w0”⟩1
37 30 36 eqtrdi c=fw++⟨“w0”⟩2ndcprefix2ndc1=w++⟨“w0”⟩prefixw++⟨“w0”⟩1
38 37 2 fvmptg fw++⟨“w0”⟩Cw++⟨“w0”⟩prefixw++⟨“w0”⟩1VFfw++⟨“w0”⟩=w++⟨“w0”⟩prefixw++⟨“w0”⟩1
39 25 26 38 sylancl wWordVtxG1wfw++⟨“w0”⟩ClWalksGFfw++⟨“w0”⟩=w++⟨“w0”⟩prefixw++⟨“w0”⟩1
40 wrdlenccats1lenm1 wWordVtxGw++⟨“w0”⟩1=w
41 40 ad2antrr wWordVtxG1wfw++⟨“w0”⟩ClWalksGw++⟨“w0”⟩1=w
42 41 oveq2d wWordVtxG1wfw++⟨“w0”⟩ClWalksGw++⟨“w0”⟩prefixw++⟨“w0”⟩1=w++⟨“w0”⟩prefixw
43 simpll wWordVtxG1wfw++⟨“w0”⟩ClWalksGwWordVtxG
44 simpl wWordVtxG1wfw++⟨“w0”⟩ClWalksGwWordVtxG1w
45 wrdsymb1 wWordVtxG1ww0VtxG
46 44 45 syl wWordVtxG1wfw++⟨“w0”⟩ClWalksGw0VtxG
47 46 s1cld wWordVtxG1wfw++⟨“w0”⟩ClWalksG⟨“w0”⟩WordVtxG
48 eqidd wWordVtxG1wfw++⟨“w0”⟩ClWalksGw=w
49 pfxccatid wWordVtxG⟨“w0”⟩WordVtxGw=ww++⟨“w0”⟩prefixw=w
50 43 47 48 49 syl3anc wWordVtxG1wfw++⟨“w0”⟩ClWalksGw++⟨“w0”⟩prefixw=w
51 39 42 50 3eqtrrd wWordVtxG1wfw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
52 51 ex wWordVtxG1wfw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
53 52 3adant1 GUSHGraphwWordVtxG1wfw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
54 53 ad2antlr fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wc=fw++⟨“w0”⟩fw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
55 fveq2 c=fw++⟨“w0”⟩Fc=Ffw++⟨“w0”⟩
56 55 eqeq2d c=fw++⟨“w0”⟩w=Fcw=Ffw++⟨“w0”⟩
57 56 imbi2d c=fw++⟨“w0”⟩fw++⟨“w0”⟩ClWalksGw=Fcfw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
58 57 adantl fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wc=fw++⟨“w0”⟩fw++⟨“w0”⟩ClWalksGw=Fcfw++⟨“w0”⟩ClWalksGw=Ffw++⟨“w0”⟩
59 54 58 mpbird fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wc=fw++⟨“w0”⟩fw++⟨“w0”⟩ClWalksGw=Fc
60 24 59 rspcimedv fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wfw++⟨“w0”⟩ClWalksGcCw=Fc
61 60 ex fw++⟨“w0”⟩ClWalksGGUSHGraphwWordVtxG1wfw++⟨“w0”⟩ClWalksGcCw=Fc
62 61 pm2.43b GUSHGraphwWordVtxG1wfw++⟨“w0”⟩ClWalksGcCw=Fc
63 19 62 biimtrid GUSHGraphwWordVtxG1wfClWalksGw++⟨“w0”⟩cCw=Fc
64 63 exlimdv GUSHGraphwWordVtxG1wffClWalksGw++⟨“w0”⟩cCw=Fc
65 18 64 sylbird GUSHGraphwWordVtxG1wwClWWalksGcCw=Fc
66 65 3expib GUSHGraphwWordVtxG1wwClWWalksGcCw=Fc
67 66 com23 GUSHGraphwClWWalksGwWordVtxG1wcCw=Fc
68 67 imp GUSHGraphwClWWalksGwWordVtxG1wcCw=Fc
69 16 68 mpd GUSHGraphwClWWalksGcCw=Fc
70 69 ralrimiva GUSHGraphwClWWalksGcCw=Fc
71 dffo3 F:ContoClWWalksGF:CClWWalksGwClWWalksGcCw=Fc
72 3 70 71 sylanbrc GUSHGraphF:ContoClWWalksG