Description: F is a function from the nonempty closed walks onto the closed walks as words in a simple pseudograph. (Contributed by Alexander van der Vekens, 30-Jun-2018) (Revised by AV, 2-May-2021) (Revised by AV, 29-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | clwlkclwwlkf.c | |
|
clwlkclwwlkf.f | |
||
Assertion | clwlkclwwlkfo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwlkclwwlkf.c | |
|
2 | clwlkclwwlkf.f | |
|
3 | 1 2 | clwlkclwwlkf | |
4 | clwwlkgt0 | |
|
5 | eqid | |
|
6 | 5 | clwwlkbp | |
7 | lencl | |
|
8 | 7 | nn0zd | |
9 | zgt0ge1 | |
|
10 | 8 9 | syl | |
11 | 10 | biimpd | |
12 | 11 | anc2li | |
13 | 12 | 3ad2ant2 | |
14 | 6 13 | syl | |
15 | 4 14 | mpd | |
16 | 15 | adantl | |
17 | eqid | |
|
18 | 5 17 | clwlkclwwlk2 | |
19 | df-br | |
|
20 | simpr2 | |
|
21 | simpr3 | |
|
22 | simpl | |
|
23 | 1 | clwlkclwwlkfolem | |
24 | 20 21 22 23 | syl3anc | |
25 | 23 | 3expa | |
26 | ovex | |
|
27 | fveq2 | |
|
28 | 2fveq3 | |
|
29 | 28 | oveq1d | |
30 | 27 29 | oveq12d | |
31 | vex | |
|
32 | ovex | |
|
33 | 31 32 | op2nd | |
34 | 33 | fveq2i | |
35 | 34 | oveq1i | |
36 | 33 35 | oveq12i | |
37 | 30 36 | eqtrdi | |
38 | 37 2 | fvmptg | |
39 | 25 26 38 | sylancl | |
40 | wrdlenccats1lenm1 | |
|
41 | 40 | ad2antrr | |
42 | 41 | oveq2d | |
43 | simpll | |
|
44 | simpl | |
|
45 | wrdsymb1 | |
|
46 | 44 45 | syl | |
47 | 46 | s1cld | |
48 | eqidd | |
|
49 | pfxccatid | |
|
50 | 43 47 48 49 | syl3anc | |
51 | 39 42 50 | 3eqtrrd | |
52 | 51 | ex | |
53 | 52 | 3adant1 | |
54 | 53 | ad2antlr | |
55 | fveq2 | |
|
56 | 55 | eqeq2d | |
57 | 56 | imbi2d | |
58 | 57 | adantl | |
59 | 54 58 | mpbird | |
60 | 24 59 | rspcimedv | |
61 | 60 | ex | |
62 | 61 | pm2.43b | |
63 | 19 62 | biimtrid | |
64 | 63 | exlimdv | |
65 | 18 64 | sylbird | |
66 | 65 | 3expib | |
67 | 66 | com23 | |
68 | 67 | imp | |
69 | 16 68 | mpd | |
70 | 69 | ralrimiva | |
71 | dffo3 | |
|
72 | 3 70 71 | sylanbrc | |