Metamath Proof Explorer


Theorem clwwisshclwwslemlem

Description: Lemma for clwwisshclwwslem . (Contributed by Alexander van der Vekens, 23-Mar-2018)

Ref Expression
Assertion clwwisshclwwslemlem L2ABi0..^L1WiWi+1RWL1W0RWA+BmodLWA+1+BmodLR

Proof

Step Hyp Ref Expression
1 zcn AA
2 1 3ad2ant2 L2ABA
3 1cnd L2AB1
4 zcn BB
5 4 3ad2ant3 L2ABB
6 2 3 5 add32d L2ABA+1+B=A+B+1
7 6 fvoveq1d L2ABWA+1+BmodL=WA+B+1modL
8 7 3ad2ant1 L2ABi0..^L1WiWi+1RWL1W0RWA+1+BmodL=WA+B+1modL
9 8 preq2d L2ABi0..^L1WiWi+1RWL1W0RWA+BmodLWA+1+BmodL=WA+BmodLWA+B+1modL
10 zaddcl ABA+B
11 10 3adant1 L2ABA+B
12 eluz2nn L2L
13 12 3ad2ant1 L2ABL
14 11 13 zmodcld L2ABA+BmodL0
15 14 adantr L2ABA+BmodL<L1A+BmodL0
16 uz2m1nn L2L1
17 16 3ad2ant1 L2ABL1
18 17 adantr L2ABA+BmodL<L1L1
19 simpr L2ABA+BmodL<L1A+BmodL<L1
20 elfzo0 A+BmodL0..^L1A+BmodL0L1A+BmodL<L1
21 15 18 19 20 syl3anbrc L2ABA+BmodL<L1A+BmodL0..^L1
22 fveq2 i=A+BmodLWi=WA+BmodL
23 fvoveq1 i=A+BmodLWi+1=WA+BmodL+1
24 22 23 preq12d i=A+BmodLWiWi+1=WA+BmodLWA+BmodL+1
25 24 eleq1d i=A+BmodLWiWi+1RWA+BmodLWA+BmodL+1R
26 25 rspcv A+BmodL0..^L1i0..^L1WiWi+1RWA+BmodLWA+BmodL+1R
27 21 26 syl L2ABA+BmodL<L1i0..^L1WiWi+1RWA+BmodLWA+BmodL+1R
28 10 zred ABA+B
29 28 3adant1 L2ABA+B
30 29 adantr L2ABA+BmodL<L1A+B
31 12 nnrpd L2L+
32 31 3ad2ant1 L2ABL+
33 32 adantr L2ABA+BmodL<L1L+
34 modltm1p1mod A+BL+A+BmodL<L1A+B+1modL=A+BmodL+1
35 30 33 19 34 syl3anc L2ABA+BmodL<L1A+B+1modL=A+BmodL+1
36 35 fveq2d L2ABA+BmodL<L1WA+B+1modL=WA+BmodL+1
37 36 preq2d L2ABA+BmodL<L1WA+BmodLWA+B+1modL=WA+BmodLWA+BmodL+1
38 37 eleq1d L2ABA+BmodL<L1WA+BmodLWA+B+1modLRWA+BmodLWA+BmodL+1R
39 27 38 sylibrd L2ABA+BmodL<L1i0..^L1WiWi+1RWA+BmodLWA+B+1modLR
40 39 impancom L2ABi0..^L1WiWi+1RA+BmodL<L1WA+BmodLWA+B+1modLR
41 40 3adant3 L2ABi0..^L1WiWi+1RWL1W0RA+BmodL<L1WA+BmodLWA+B+1modLR
42 zmodfzo A+BLA+BmodL0..^L
43 11 13 42 syl2anc L2ABA+BmodL0..^L
44 elfzonlteqm1 A+BmodL0..^L¬A+BmodL<L1A+BmodL=L1
45 44 eqcomd A+BmodL0..^L¬A+BmodL<L1L1=A+BmodL
46 45 ex A+BmodL0..^L¬A+BmodL<L1L1=A+BmodL
47 43 46 syl L2AB¬A+BmodL<L1L1=A+BmodL
48 fveq2 L1=A+BmodLWL1=WA+BmodL
49 48 adantl L2ABL1=A+BmodLWL1=WA+BmodL
50 zre AA
51 zre BB
52 readdcl ABA+B
53 50 51 52 syl2an ABA+B
54 53 3adant1 L2ABA+B
55 54 32 jca L2ABA+BL+
56 55 adantr L2ABL1=A+BmodLA+BL+
57 simpr L2ABL1=A+BmodLL1=A+BmodL
58 57 eqcomd L2ABL1=A+BmodLA+BmodL=L1
59 modm1p1mod0 A+BL+A+BmodL=L1A+B+1modL=0
60 56 58 59 sylc L2ABL1=A+BmodLA+B+1modL=0
61 60 eqcomd L2ABL1=A+BmodL0=A+B+1modL
62 61 fveq2d L2ABL1=A+BmodLW0=WA+B+1modL
63 49 62 preq12d L2ABL1=A+BmodLWL1W0=WA+BmodLWA+B+1modL
64 63 eleq1d L2ABL1=A+BmodLWL1W0RWA+BmodLWA+B+1modLR
65 64 biimpd L2ABL1=A+BmodLWL1W0RWA+BmodLWA+B+1modLR
66 65 ex L2ABL1=A+BmodLWL1W0RWA+BmodLWA+B+1modLR
67 47 66 syld L2AB¬A+BmodL<L1WL1W0RWA+BmodLWA+B+1modLR
68 67 com23 L2ABWL1W0R¬A+BmodL<L1WA+BmodLWA+B+1modLR
69 68 imp L2ABWL1W0R¬A+BmodL<L1WA+BmodLWA+B+1modLR
70 69 3adant2 L2ABi0..^L1WiWi+1RWL1W0R¬A+BmodL<L1WA+BmodLWA+B+1modLR
71 41 70 pm2.61d L2ABi0..^L1WiWi+1RWL1W0RWA+BmodLWA+B+1modLR
72 9 71 eqeltrd L2ABi0..^L1WiWi+1RWL1W0RWA+BmodLWA+1+BmodLR