Description: Lemma for clwwisshclwwslem . (Contributed by Alexander van der Vekens, 23-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | clwwisshclwwslemlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn | |
|
2 | 1 | 3ad2ant2 | |
3 | 1cnd | |
|
4 | zcn | |
|
5 | 4 | 3ad2ant3 | |
6 | 2 3 5 | add32d | |
7 | 6 | fvoveq1d | |
8 | 7 | 3ad2ant1 | |
9 | 8 | preq2d | |
10 | zaddcl | |
|
11 | 10 | 3adant1 | |
12 | eluz2nn | |
|
13 | 12 | 3ad2ant1 | |
14 | 11 13 | zmodcld | |
15 | 14 | adantr | |
16 | uz2m1nn | |
|
17 | 16 | 3ad2ant1 | |
18 | 17 | adantr | |
19 | simpr | |
|
20 | elfzo0 | |
|
21 | 15 18 19 20 | syl3anbrc | |
22 | fveq2 | |
|
23 | fvoveq1 | |
|
24 | 22 23 | preq12d | |
25 | 24 | eleq1d | |
26 | 25 | rspcv | |
27 | 21 26 | syl | |
28 | 10 | zred | |
29 | 28 | 3adant1 | |
30 | 29 | adantr | |
31 | 12 | nnrpd | |
32 | 31 | 3ad2ant1 | |
33 | 32 | adantr | |
34 | modltm1p1mod | |
|
35 | 30 33 19 34 | syl3anc | |
36 | 35 | fveq2d | |
37 | 36 | preq2d | |
38 | 37 | eleq1d | |
39 | 27 38 | sylibrd | |
40 | 39 | impancom | |
41 | 40 | 3adant3 | |
42 | zmodfzo | |
|
43 | 11 13 42 | syl2anc | |
44 | elfzonlteqm1 | |
|
45 | 44 | eqcomd | |
46 | 45 | ex | |
47 | 43 46 | syl | |
48 | fveq2 | |
|
49 | 48 | adantl | |
50 | zre | |
|
51 | zre | |
|
52 | readdcl | |
|
53 | 50 51 52 | syl2an | |
54 | 53 | 3adant1 | |
55 | 54 32 | jca | |
56 | 55 | adantr | |
57 | simpr | |
|
58 | 57 | eqcomd | |
59 | modm1p1mod0 | |
|
60 | 56 58 59 | sylc | |
61 | 60 | eqcomd | |
62 | 61 | fveq2d | |
63 | 49 62 | preq12d | |
64 | 63 | eleq1d | |
65 | 64 | biimpd | |
66 | 65 | ex | |
67 | 47 66 | syld | |
68 | 67 | com23 | |
69 | 68 | imp | |
70 | 69 | 3adant2 | |
71 | 41 70 | pm2.61d | |
72 | 9 71 | eqeltrd | |