Metamath Proof Explorer


Theorem cncmet

Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypothesis cncmet.1 D=abs
Assertion cncmet DCMet

Proof

Step Hyp Ref Expression
1 cncmet.1 D=abs
2 eqid TopOpenfld=TopOpenfld
3 2 cnfldtopn TopOpenfld=MetOpenabs
4 1 fveq2i MetOpenD=MetOpenabs
5 3 4 eqtr4i TopOpenfld=MetOpenD
6 cnmet absMet
7 1 6 eqeltri DMet
8 7 a1i DMet
9 1rp 1+
10 9 a1i 1+
11 2 cnfldtop TopOpenfldTop
12 metxmet DMetD∞Met
13 7 12 ax-mp D∞Met
14 1xr 1*
15 blssm D∞Metx1*xballD1
16 13 14 15 mp3an13 xxballD1
17 unicntop =TopOpenfld
18 17 clscld TopOpenfldTopxballD1clsTopOpenfldxballD1ClsdTopOpenfld
19 11 16 18 sylancr xclsTopOpenfldxballD1ClsdTopOpenfld
20 abscl xx
21 peano2re xx+1
22 20 21 syl xx+1
23 df-rab y|xDy1=y|yxDy1
24 23 eqcomi y|yxDy1=y|xDy1
25 5 24 blcls D∞Metx1*clsTopOpenfldxballD1y|yxDy1
26 13 14 25 mp3an13 xclsTopOpenfldxballD1y|yxDy1
27 abscl yy
28 27 ad2antrl xyxDy1y
29 20 adantr xyxDy1x
30 28 29 resubcld xyxDy1yx
31 simpl yxDy1y
32 id xx
33 subcl yxyx
34 31 32 33 syl2anr xyxDy1yx
35 34 abscld xyxDy1yx
36 1red xyxDy11
37 simprl xyxDy1y
38 simpl xyxDy1x
39 37 38 abs2difd xyxDy1yxyx
40 1 cnmetdval xyxDy=xy
41 abssub xyxy=yx
42 40 41 eqtrd xyxDy=yx
43 42 adantrr xyxDy1xDy=yx
44 simprr xyxDy1xDy1
45 43 44 eqbrtrrd xyxDy1yx1
46 30 35 36 39 45 letrd xyxDy1yx1
47 28 29 36 lesubadd2d xyxDy1yx1yx+1
48 46 47 mpbid xyxDy1yx+1
49 48 ex xyxDy1yx+1
50 49 ss2abdv xy|yxDy1y|yx+1
51 26 50 sstrd xclsTopOpenfldxballD1y|yx+1
52 ssabral clsTopOpenfldxballD1y|yx+1yclsTopOpenfldxballD1yx+1
53 51 52 sylib xyclsTopOpenfldxballD1yx+1
54 brralrspcev x+1yclsTopOpenfldxballD1yx+1ryclsTopOpenfldxballD1yr
55 22 53 54 syl2anc xryclsTopOpenfldxballD1yr
56 17 clsss3 TopOpenfldTopxballD1clsTopOpenfldxballD1
57 11 16 56 sylancr xclsTopOpenfldxballD1
58 eqid TopOpenfld𝑡clsTopOpenfldxballD1=TopOpenfld𝑡clsTopOpenfldxballD1
59 2 58 cnheibor clsTopOpenfldxballD1TopOpenfld𝑡clsTopOpenfldxballD1CompclsTopOpenfldxballD1ClsdTopOpenfldryclsTopOpenfldxballD1yr
60 57 59 syl xTopOpenfld𝑡clsTopOpenfldxballD1CompclsTopOpenfldxballD1ClsdTopOpenfldryclsTopOpenfldxballD1yr
61 19 55 60 mpbir2and xTopOpenfld𝑡clsTopOpenfldxballD1Comp
62 61 adantl xTopOpenfld𝑡clsTopOpenfldxballD1Comp
63 5 8 10 62 relcmpcmet DCMet
64 63 mptru DCMet