Description: The set of complex numbers is a complete metric space under the absolute value metric. (Contributed by NM, 20-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cncmet.1 | |
|
Assertion | cncmet | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncmet.1 | |
|
2 | eqid | |
|
3 | 2 | cnfldtopn | |
4 | 1 | fveq2i | |
5 | 3 4 | eqtr4i | |
6 | cnmet | |
|
7 | 1 6 | eqeltri | |
8 | 7 | a1i | |
9 | 1rp | |
|
10 | 9 | a1i | |
11 | 2 | cnfldtop | |
12 | metxmet | |
|
13 | 7 12 | ax-mp | |
14 | 1xr | |
|
15 | blssm | |
|
16 | 13 14 15 | mp3an13 | |
17 | unicntop | |
|
18 | 17 | clscld | |
19 | 11 16 18 | sylancr | |
20 | abscl | |
|
21 | peano2re | |
|
22 | 20 21 | syl | |
23 | df-rab | |
|
24 | 23 | eqcomi | |
25 | 5 24 | blcls | |
26 | 13 14 25 | mp3an13 | |
27 | abscl | |
|
28 | 27 | ad2antrl | |
29 | 20 | adantr | |
30 | 28 29 | resubcld | |
31 | simpl | |
|
32 | id | |
|
33 | subcl | |
|
34 | 31 32 33 | syl2anr | |
35 | 34 | abscld | |
36 | 1red | |
|
37 | simprl | |
|
38 | simpl | |
|
39 | 37 38 | abs2difd | |
40 | 1 | cnmetdval | |
41 | abssub | |
|
42 | 40 41 | eqtrd | |
43 | 42 | adantrr | |
44 | simprr | |
|
45 | 43 44 | eqbrtrrd | |
46 | 30 35 36 39 45 | letrd | |
47 | 28 29 36 | lesubadd2d | |
48 | 46 47 | mpbid | |
49 | 48 | ex | |
50 | 49 | ss2abdv | |
51 | 26 50 | sstrd | |
52 | ssabral | |
|
53 | 51 52 | sylib | |
54 | brralrspcev | |
|
55 | 22 53 54 | syl2anc | |
56 | 17 | clsss3 | |
57 | 11 16 56 | sylancr | |
58 | eqid | |
|
59 | 2 58 | cnheibor | |
60 | 57 59 | syl | |
61 | 19 55 60 | mpbir2and | |
62 | 61 | adantl | |
63 | 5 8 10 62 | relcmpcmet | |
64 | 63 | mptru | |