Metamath Proof Explorer


Theorem cnextcn

Description: Extension by continuity. Theorem 1 of BourbakiTop1 p. I.57. Given a topology J on C , a subset A dense in C , this states a condition for F from A to a regular space K to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018)

Ref Expression
Hypotheses cnextf.1 C = J
cnextf.2 B = K
cnextf.3 φ J Top
cnextf.4 φ K Haus
cnextf.5 φ F : A B
cnextf.a φ A C
cnextf.6 φ cls J A = C
cnextf.7 φ x C K fLimf nei J x 𝑡 A F
cnextcn.8 φ K Reg
Assertion cnextcn φ J CnExt K F J Cn K

Proof

Step Hyp Ref Expression
1 cnextf.1 C = J
2 cnextf.2 B = K
3 cnextf.3 φ J Top
4 cnextf.4 φ K Haus
5 cnextf.5 φ F : A B
6 cnextf.a φ A C
7 cnextf.6 φ cls J A = C
8 cnextf.7 φ x C K fLimf nei J x 𝑡 A F
9 cnextcn.8 φ K Reg
10 simpll φ x C w nei K J CnExt K F x φ
11 simpll φ x C w nei K J CnExt K F x d nei J x cls K F d A w φ
12 simpr3 φ x C w nei K J CnExt K F x d nei J x cls K F d A w cls K F d A w
13 3 ad2antrr φ x C w nei K J CnExt K F x d nei J x cls K F d A w J Top
14 simpr2 φ x C w nei K J CnExt K F x d nei J x cls K F d A w d nei J x
15 neii2 J Top d nei J x v J x v v d
16 13 14 15 syl2anc φ x C w nei K J CnExt K F x d nei J x cls K F d A w v J x v v d
17 vex x V
18 17 snss x v x v
19 18 biimpri x v x v
20 19 anim1i x v v d x v v d
21 20 anim2i v J x v v d v J x v v d
22 21 anim2i φ v J x v v d φ v J x v v d
23 22 ex φ v J x v v d φ v J x v v d
24 3anass φ v J x v φ v J x v
25 24 anbi1i φ v J x v v d φ v J x v v d
26 anass φ v J x v v d φ v J x v v d
27 anass v J x v v d v J x v v d
28 27 anbi2i φ v J x v v d φ v J x v v d
29 25 26 28 3bitri φ v J x v v d φ v J x v v d
30 opnneip J Top v J x v v nei J x
31 3 30 syl3an1 φ v J x v v nei J x
32 31 adantr φ v J x v v d v nei J x
33 simpr2 v d φ v J x v v J
34 33 ex v d φ v J x v v J
35 34 imdistanri φ v J x v v d v J v d
36 32 35 jca φ v J x v v d v nei J x v J v d
37 29 36 sylbir φ v J x v v d v nei J x v J v d
38 23 37 syl6 φ v J x v v d v nei J x v J v d
39 38 adantr φ cls K F d A w v J x v v d v nei J x v J v d
40 haustop K Haus K Top
41 4 40 syl φ K Top
42 imassrn F d A ran F
43 5 frnd φ ran F B
44 42 43 sstrid φ F d A B
45 ssrin v d v A d A
46 imass2 v A d A F v A F d A
47 45 46 syl v d F v A F d A
48 2 clsss K Top F d A B F v A F d A cls K F v A cls K F d A
49 41 44 47 48 syl2an3an φ v d cls K F v A cls K F d A
50 sstr cls K F v A cls K F d A cls K F d A w cls K F v A w
51 49 50 sylan φ v d cls K F d A w cls K F v A w
52 51 an32s φ cls K F d A w v d cls K F v A w
53 52 ex φ cls K F d A w v d cls K F v A w
54 53 anim2d φ cls K F d A w v J v d v J cls K F v A w
55 54 anim2d φ cls K F d A w v nei J x v J v d v nei J x v J cls K F v A w
56 39 55 syld φ cls K F d A w v J x v v d v nei J x v J cls K F v A w
57 56 reximdv2 φ cls K F d A w v J x v v d v nei J x v J cls K F v A w
58 57 imp φ cls K F d A w v J x v v d v nei J x v J cls K F v A w
59 11 12 16 58 syl21anc φ x C w nei K J CnExt K F x d nei J x cls K F d A w v nei J x v J cls K F v A w
60 59 3anassrs φ x C w nei K J CnExt K F x d nei J x cls K F d A w v nei J x v J cls K F v A w
61 simpr φ x C w nei K J CnExt K F x u nei J x 𝑡 A cls K F u w cls K F u w
62 simp-4l φ x C w nei K J CnExt K F x u nei J x 𝑡 A cls K F u w φ
63 simplr φ x C w nei K J CnExt K F x u nei J x 𝑡 A cls K F u w u nei J x 𝑡 A
64 imaeq2 u = d A F u = F d A
65 64 fveq2d u = d A cls K F u = cls K F d A
66 65 sseq1d u = d A cls K F u w cls K F d A w
67 66 biimpcd cls K F u w u = d A cls K F d A w
68 67 reximdv cls K F u w d nei J x u = d A d nei J x cls K F d A w
69 fvexd φ nei J x V
70 1 toptopon J Top J TopOn C
71 3 70 sylib φ J TopOn C
72 71 elfvexd φ C V
73 72 6 ssexd φ A V
74 elrest nei J x V A V u nei J x 𝑡 A d nei J x u = d A
75 69 73 74 syl2anc φ u nei J x 𝑡 A d nei J x u = d A
76 75 biimpa φ u nei J x 𝑡 A d nei J x u = d A
77 68 76 impel cls K F u w φ u nei J x 𝑡 A d nei J x cls K F d A w
78 61 62 63 77 syl12anc φ x C w nei K J CnExt K F x u nei J x 𝑡 A cls K F u w d nei J x cls K F d A w
79 eleq1w x = y x C y C
80 79 anbi2d x = y φ x C φ y C
81 sneq x = y x = y
82 81 fveq2d x = y nei J x = nei J y
83 82 oveq1d x = y nei J x 𝑡 A = nei J y 𝑡 A
84 83 oveq2d x = y K fLimf nei J x 𝑡 A = K fLimf nei J y 𝑡 A
85 84 fveq1d x = y K fLimf nei J x 𝑡 A F = K fLimf nei J y 𝑡 A F
86 85 neeq1d x = y K fLimf nei J x 𝑡 A F K fLimf nei J y 𝑡 A F
87 80 86 imbi12d x = y φ x C K fLimf nei J x 𝑡 A F φ y C K fLimf nei J y 𝑡 A F
88 87 8 chvarvv φ y C K fLimf nei J y 𝑡 A F
89 1 2 3 4 5 6 7 88 cnextfvval φ x C J CnExt K F x = K fLimf nei J x 𝑡 A F
90 fvex K fLimf nei J x 𝑡 A F V
91 90 uniex K fLimf nei J x 𝑡 A F V
92 91 snid K fLimf nei J x 𝑡 A F K fLimf nei J x 𝑡 A F
93 4 adantr φ x C K Haus
94 7 eleq2d φ x cls J A x C
95 94 biimpar φ x C x cls J A
96 71 adantr φ x C J TopOn C
97 6 adantr φ x C A C
98 simpr φ x C x C
99 trnei J TopOn C A C x C x cls J A nei J x 𝑡 A Fil A
100 96 97 98 99 syl3anc φ x C x cls J A nei J x 𝑡 A Fil A
101 95 100 mpbid φ x C nei J x 𝑡 A Fil A
102 5 adantr φ x C F : A B
103 2 hausflf2 K Haus nei J x 𝑡 A Fil A F : A B K fLimf nei J x 𝑡 A F K fLimf nei J x 𝑡 A F 1 𝑜
104 93 101 102 8 103 syl31anc φ x C K fLimf nei J x 𝑡 A F 1 𝑜
105 en1b K fLimf nei J x 𝑡 A F 1 𝑜 K fLimf nei J x 𝑡 A F = K fLimf nei J x 𝑡 A F
106 104 105 sylib φ x C K fLimf nei J x 𝑡 A F = K fLimf nei J x 𝑡 A F
107 92 106 eleqtrrid φ x C K fLimf nei J x 𝑡 A F K fLimf nei J x 𝑡 A F
108 89 107 eqeltrd φ x C J CnExt K F x K fLimf nei J x 𝑡 A F
109 2 toptopon K Top K TopOn B
110 41 109 sylib φ K TopOn B
111 110 adantr φ x C K TopOn B
112 flfnei K TopOn B nei J x 𝑡 A Fil A F : A B J CnExt K F x K fLimf nei J x 𝑡 A F J CnExt K F x B b nei K J CnExt K F x u nei J x 𝑡 A F u b
113 111 101 102 112 syl3anc φ x C J CnExt K F x K fLimf nei J x 𝑡 A F J CnExt K F x B b nei K J CnExt K F x u nei J x 𝑡 A F u b
114 108 113 mpbid φ x C J CnExt K F x B b nei K J CnExt K F x u nei J x 𝑡 A F u b
115 114 simprd φ x C b nei K J CnExt K F x u nei J x 𝑡 A F u b
116 115 r19.21bi φ x C b nei K J CnExt K F x u nei J x 𝑡 A F u b
117 116 ad4ant13 φ x C w nei K J CnExt K F x b nei K J CnExt K F x cls K b w u nei J x 𝑡 A F u b
118 41 ad3antrrr φ x C b nei K J CnExt K F x cls K b w K Top
119 simplr φ x C b nei K J CnExt K F x cls K b w b nei K J CnExt K F x
120 2 neii1 K Top b nei K J CnExt K F x b B
121 118 119 120 syl2anc φ x C b nei K J CnExt K F x cls K b w b B
122 simpr φ x C b nei K J CnExt K F x cls K b w cls K b w
123 2 clsss K Top b B F u b cls K F u cls K b
124 sstr cls K F u cls K b cls K b w cls K F u w
125 123 124 sylan K Top b B F u b cls K b w cls K F u w
126 125 3an1rs K Top b B cls K b w F u b cls K F u w
127 126 ex K Top b B cls K b w F u b cls K F u w
128 127 reximdv K Top b B cls K b w u nei J x 𝑡 A F u b u nei J x 𝑡 A cls K F u w
129 118 121 122 128 syl3anc φ x C b nei K J CnExt K F x cls K b w u nei J x 𝑡 A F u b u nei J x 𝑡 A cls K F u w
130 129 adantllr φ x C w nei K J CnExt K F x b nei K J CnExt K F x cls K b w u nei J x 𝑡 A F u b u nei J x 𝑡 A cls K F u w
131 117 130 mpd φ x C w nei K J CnExt K F x b nei K J CnExt K F x cls K b w u nei J x 𝑡 A cls K F u w
132 41 ad2antrr φ x C w nei K J CnExt K F x K Top
133 9 ad2antrr φ x C w nei K J CnExt K F x K Reg
134 133 ad2antrr φ x C w nei K J CnExt K F x c K J CnExt K F x c c w K Reg
135 simplr φ x C w nei K J CnExt K F x c K J CnExt K F x c c w c K
136 simprl φ x C w nei K J CnExt K F x c K J CnExt K F x c c w J CnExt K F x c
137 regsep K Reg c K J CnExt K F x c b K J CnExt K F x b cls K b c
138 134 135 136 137 syl3anc φ x C w nei K J CnExt K F x c K J CnExt K F x c c w b K J CnExt K F x b cls K b c
139 sstr cls K b c c w cls K b w
140 139 expcom c w cls K b c cls K b w
141 140 anim2d c w J CnExt K F x b cls K b c J CnExt K F x b cls K b w
142 141 reximdv c w b K J CnExt K F x b cls K b c b K J CnExt K F x b cls K b w
143 142 ad2antll φ x C w nei K J CnExt K F x c K J CnExt K F x c c w b K J CnExt K F x b cls K b c b K J CnExt K F x b cls K b w
144 138 143 mpd φ x C w nei K J CnExt K F x c K J CnExt K F x c c w b K J CnExt K F x b cls K b w
145 simpr φ x C w nei K J CnExt K F x w nei K J CnExt K F x
146 neii2 K Top w nei K J CnExt K F x c K J CnExt K F x c c w
147 fvex J CnExt K F x V
148 147 snss J CnExt K F x c J CnExt K F x c
149 148 anbi1i J CnExt K F x c c w J CnExt K F x c c w
150 149 biimpri J CnExt K F x c c w J CnExt K F x c c w
151 150 reximi c K J CnExt K F x c c w c K J CnExt K F x c c w
152 146 151 syl K Top w nei K J CnExt K F x c K J CnExt K F x c c w
153 132 145 152 syl2anc φ x C w nei K J CnExt K F x c K J CnExt K F x c c w
154 144 153 r19.29a φ x C w nei K J CnExt K F x b K J CnExt K F x b cls K b w
155 anass b K J CnExt K F x b cls K b w b K J CnExt K F x b cls K b w
156 opnneip K Top b K J CnExt K F x b b nei K J CnExt K F x
157 156 3expib K Top b K J CnExt K F x b b nei K J CnExt K F x
158 157 anim1d K Top b K J CnExt K F x b cls K b w b nei K J CnExt K F x cls K b w
159 155 158 syl5bir K Top b K J CnExt K F x b cls K b w b nei K J CnExt K F x cls K b w
160 159 reximdv2 K Top b K J CnExt K F x b cls K b w b nei K J CnExt K F x cls K b w
161 132 154 160 sylc φ x C w nei K J CnExt K F x b nei K J CnExt K F x cls K b w
162 131 161 r19.29a φ x C w nei K J CnExt K F x u nei J x 𝑡 A cls K F u w
163 78 162 r19.29a φ x C w nei K J CnExt K F x d nei J x cls K F d A w
164 60 163 r19.29a φ x C w nei K J CnExt K F x v nei J x v J cls K F v A w
165 simplr φ v J cls K F v A w z v cls K F v A w
166 simpll φ v J z v φ
167 3 ad2antrr φ v J z v J Top
168 simplr φ v J z v v J
169 1 eltopss J Top v J v C
170 167 168 169 syl2anc φ v J z v v C
171 simpr φ v J z v z v
172 170 171 sseldd φ v J z v z C
173 fvexd φ v J z v nei J z V
174 73 ad2antrr φ v J z v A V
175 opnneip J Top v J z v v nei J z
176 3 175 syl3an1 φ v J z v v nei J z
177 176 3expa φ v J z v v nei J z
178 elrestr nei J z V A V v nei J z v A nei J z 𝑡 A
179 173 174 177 178 syl3anc φ v J z v v A nei J z 𝑡 A
180 1 2 3 4 5 6 7 8 cnextfvval φ z C J CnExt K F z = K fLimf nei J z 𝑡 A F
181 180 adantr φ z C v A nei J z 𝑡 A J CnExt K F z = K fLimf nei J z 𝑡 A F
182 4 adantr φ z C K Haus
183 7 eleq2d φ z cls J A z C
184 183 biimpar φ z C z cls J A
185 71 adantr φ z C J TopOn C
186 6 adantr φ z C A C
187 simpr φ z C z C
188 trnei J TopOn C A C z C z cls J A nei J z 𝑡 A Fil A
189 185 186 187 188 syl3anc φ z C z cls J A nei J z 𝑡 A Fil A
190 184 189 mpbid φ z C nei J z 𝑡 A Fil A
191 5 adantr φ z C F : A B
192 eleq1w x = z x C z C
193 192 anbi2d x = z φ x C φ z C
194 sneq x = z x = z
195 194 fveq2d x = z nei J x = nei J z
196 195 oveq1d x = z nei J x 𝑡 A = nei J z 𝑡 A
197 196 oveq2d x = z K fLimf nei J x 𝑡 A = K fLimf nei J z 𝑡 A
198 197 fveq1d x = z K fLimf nei J x 𝑡 A F = K fLimf nei J z 𝑡 A F
199 198 neeq1d x = z K fLimf nei J x 𝑡 A F K fLimf nei J z 𝑡 A F
200 193 199 imbi12d x = z φ x C K fLimf nei J x 𝑡 A F φ z C K fLimf nei J z 𝑡 A F
201 200 8 chvarvv φ z C K fLimf nei J z 𝑡 A F
202 2 hausflf2 K Haus nei J z 𝑡 A Fil A F : A B K fLimf nei J z 𝑡 A F K fLimf nei J z 𝑡 A F 1 𝑜
203 182 190 191 201 202 syl31anc φ z C K fLimf nei J z 𝑡 A F 1 𝑜
204 en1b K fLimf nei J z 𝑡 A F 1 𝑜 K fLimf nei J z 𝑡 A F = K fLimf nei J z 𝑡 A F
205 203 204 sylib φ z C K fLimf nei J z 𝑡 A F = K fLimf nei J z 𝑡 A F
206 205 adantr φ z C v A nei J z 𝑡 A K fLimf nei J z 𝑡 A F = K fLimf nei J z 𝑡 A F
207 110 adantr φ z C K TopOn B
208 flfval K TopOn B nei J z 𝑡 A Fil A F : A B K fLimf nei J z 𝑡 A F = K fLim B FilMap F nei J z 𝑡 A
209 207 190 191 208 syl3anc φ z C K fLimf nei J z 𝑡 A F = K fLim B FilMap F nei J z 𝑡 A
210 209 adantr φ z C v A nei J z 𝑡 A K fLimf nei J z 𝑡 A F = K fLim B FilMap F nei J z 𝑡 A
211 4 uniexd φ K V
212 211 ad2antrr φ z C v A nei J z 𝑡 A K V
213 2 212 eqeltrid φ z C v A nei J z 𝑡 A B V
214 190 adantr φ z C v A nei J z 𝑡 A nei J z 𝑡 A Fil A
215 filfbas nei J z 𝑡 A Fil A nei J z 𝑡 A fBas A
216 214 215 syl φ z C v A nei J z 𝑡 A nei J z 𝑡 A fBas A
217 5 ad2antrr φ z C v A nei J z 𝑡 A F : A B
218 simpr φ z C v A nei J z 𝑡 A v A nei J z 𝑡 A
219 fgfil nei J z 𝑡 A Fil A A filGen nei J z 𝑡 A = nei J z 𝑡 A
220 190 219 syl φ z C A filGen nei J z 𝑡 A = nei J z 𝑡 A
221 220 adantr φ z C v A nei J z 𝑡 A A filGen nei J z 𝑡 A = nei J z 𝑡 A
222 218 221 eleqtrrd φ z C v A nei J z 𝑡 A v A A filGen nei J z 𝑡 A
223 eqid A filGen nei J z 𝑡 A = A filGen nei J z 𝑡 A
224 223 imaelfm B V nei J z 𝑡 A fBas A F : A B v A A filGen nei J z 𝑡 A F v A B FilMap F nei J z 𝑡 A
225 213 216 217 222 224 syl31anc φ z C v A nei J z 𝑡 A F v A B FilMap F nei J z 𝑡 A
226 flimclsi F v A B FilMap F nei J z 𝑡 A K fLim B FilMap F nei J z 𝑡 A cls K F v A
227 225 226 syl φ z C v A nei J z 𝑡 A K fLim B FilMap F nei J z 𝑡 A cls K F v A
228 210 227 eqsstrd φ z C v A nei J z 𝑡 A K fLimf nei J z 𝑡 A F cls K F v A
229 206 228 eqsstrrd φ z C v A nei J z 𝑡 A K fLimf nei J z 𝑡 A F cls K F v A
230 fvex K fLimf nei J z 𝑡 A F V
231 230 uniex K fLimf nei J z 𝑡 A F V
232 231 snss K fLimf nei J z 𝑡 A F cls K F v A K fLimf nei J z 𝑡 A F cls K F v A
233 229 232 sylibr φ z C v A nei J z 𝑡 A K fLimf nei J z 𝑡 A F cls K F v A
234 181 233 eqeltrd φ z C v A nei J z 𝑡 A J CnExt K F z cls K F v A
235 166 172 179 234 syl21anc φ v J z v J CnExt K F z cls K F v A
236 235 adantlr φ v J cls K F v A w z v J CnExt K F z cls K F v A
237 165 236 sseldd φ v J cls K F v A w z v J CnExt K F z w
238 237 ralrimiva φ v J cls K F v A w z v J CnExt K F z w
239 238 expl φ v J cls K F v A w z v J CnExt K F z w
240 239 reximdv φ v nei J x v J cls K F v A w v nei J x z v J CnExt K F z w
241 240 ad2antrr φ x C w nei K J CnExt K F x v nei J x v J cls K F v A w v nei J x z v J CnExt K F z w
242 164 241 mpd φ x C w nei K J CnExt K F x v nei J x z v J CnExt K F z w
243 1 2 3 4 5 6 7 8 cnextf φ J CnExt K F : C B
244 243 ffund φ Fun J CnExt K F
245 244 adantr φ v nei J x Fun J CnExt K F
246 1 neii1 J Top v nei J x v C
247 3 246 sylan φ v nei J x v C
248 243 fdmd φ dom J CnExt K F = C
249 248 adantr φ v nei J x dom J CnExt K F = C
250 247 249 sseqtrrd φ v nei J x v dom J CnExt K F
251 funimass4 Fun J CnExt K F v dom J CnExt K F J CnExt K F v w z v J CnExt K F z w
252 245 250 251 syl2anc φ v nei J x J CnExt K F v w z v J CnExt K F z w
253 252 biimprd φ v nei J x z v J CnExt K F z w J CnExt K F v w
254 253 reximdva φ v nei J x z v J CnExt K F z w v nei J x J CnExt K F v w
255 10 242 254 sylc φ x C w nei K J CnExt K F x v nei J x J CnExt K F v w
256 255 ralrimiva φ x C w nei K J CnExt K F x v nei J x J CnExt K F v w
257 256 ralrimiva φ x C w nei K J CnExt K F x v nei J x J CnExt K F v w
258 1 2 cnnei J Top K Top J CnExt K F : C B J CnExt K F J Cn K x C w nei K J CnExt K F x v nei J x J CnExt K F v w
259 3 41 243 258 syl3anc φ J CnExt K F J Cn K x C w nei K J CnExt K F x v nei J x J CnExt K F v w
260 257 259 mpbird φ J CnExt K F J Cn K