Metamath Proof Explorer


Theorem cnfcom2lem

Description: Lemma for cnfcom2 . (Contributed by Mario Carneiro, 30-May-2015) (Revised by AV, 3-Jul-2019)

Ref Expression
Hypotheses cnfcom.s S=domωCNFA
cnfcom.a φAOn
cnfcom.b φBω𝑜A
cnfcom.f F=ωCNFA-1B
cnfcom.g G=OrdIsoEFsupp
cnfcom.h H=seqωkV,zVM+𝑜z
cnfcom.t T=seqωkV,fVK
cnfcom.m M=ω𝑜Gk𝑜FGk
cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
cnfcom.w W=GdomG
cnfcom2.1 φB
Assertion cnfcom2lem φdomG=sucdomG

Proof

Step Hyp Ref Expression
1 cnfcom.s S=domωCNFA
2 cnfcom.a φAOn
3 cnfcom.b φBω𝑜A
4 cnfcom.f F=ωCNFA-1B
5 cnfcom.g G=OrdIsoEFsupp
6 cnfcom.h H=seqωkV,zVM+𝑜z
7 cnfcom.t T=seqωkV,fVK
8 cnfcom.m M=ω𝑜Gk𝑜FGk
9 cnfcom.k K=xMdomf+𝑜xxdomfM+𝑜x-1
10 cnfcom.w W=GdomG
11 cnfcom2.1 φB
12 n0i B¬B=
13 11 12 syl φ¬B=
14 omelon ωOn
15 14 a1i φωOn
16 1 15 2 cantnff1o φωCNFA:S1-1 ontoω𝑜A
17 f1ocnv ωCNFA:S1-1 ontoω𝑜AωCNFA-1:ω𝑜A1-1 ontoS
18 f1of ωCNFA-1:ω𝑜A1-1 ontoSωCNFA-1:ω𝑜AS
19 16 17 18 3syl φωCNFA-1:ω𝑜AS
20 19 3 ffvelcdmd φωCNFA-1BS
21 4 20 eqeltrid φFS
22 1 15 2 cantnfs φFSF:AωfinSuppF
23 21 22 mpbid φF:AωfinSuppF
24 23 simpld φF:Aω
25 24 adantr φdomG=F:Aω
26 25 feqmptd φdomG=F=xAFx
27 dif0 A=A
28 27 eleq2i xAxA
29 simpr φdomG=domG=
30 ovexd φFsuppV
31 1 15 2 5 21 cantnfcl φEWesuppFdomGω
32 31 simpld φEWesuppF
33 5 oien FsuppVEWesuppFdomGsuppF
34 30 32 33 syl2anc φdomGsuppF
35 34 adantr φdomG=domGsuppF
36 29 35 eqbrtrrd φdomG=suppF
37 36 ensymd φdomG=suppF
38 en0 suppFFsupp=
39 37 38 sylib φdomG=Fsupp=
40 ss0b FsuppFsupp=
41 39 40 sylibr φdomG=Fsupp
42 2 adantr φdomG=AOn
43 0ex V
44 43 a1i φdomG=V
45 25 41 42 44 suppssr φdomG=xAFx=
46 28 45 sylan2br φdomG=xAFx=
47 46 mpteq2dva φdomG=xAFx=xA
48 26 47 eqtrd φdomG=F=xA
49 fconstmpt A×=xA
50 48 49 eqtr4di φdomG=F=A×
51 50 fveq2d φdomG=ωCNFAF=ωCNFAA×
52 4 fveq2i ωCNFAF=ωCNFAωCNFA-1B
53 f1ocnvfv2 ωCNFA:S1-1 ontoω𝑜ABω𝑜AωCNFAωCNFA-1B=B
54 16 3 53 syl2anc φωCNFAωCNFA-1B=B
55 52 54 eqtrid φωCNFAF=B
56 55 adantr φdomG=ωCNFAF=B
57 peano1 ω
58 57 a1i φω
59 1 15 2 58 cantnf0 φωCNFAA×=
60 59 adantr φdomG=ωCNFAA×=
61 51 56 60 3eqtr3d φdomG=B=
62 13 61 mtand φ¬domG=
63 nnlim domGω¬LimdomG
64 31 63 simpl2im φ¬LimdomG
65 ioran ¬domG=LimdomG¬domG=¬LimdomG
66 62 64 65 sylanbrc φ¬domG=LimdomG
67 5 oicl OrddomG
68 unizlim OrddomGdomG=domGdomG=LimdomG
69 67 68 ax-mp domG=domGdomG=LimdomG
70 66 69 sylnibr φ¬domG=domG
71 orduniorsuc OrddomGdomG=domGdomG=sucdomG
72 67 71 mp1i φdomG=domGdomG=sucdomG
73 72 ord φ¬domG=domGdomG=sucdomG
74 70 73 mpd φdomG=sucdomG