| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfcom.s |  | 
						
							| 2 |  | cnfcom.a |  | 
						
							| 3 |  | cnfcom.b |  | 
						
							| 4 |  | cnfcom.f |  | 
						
							| 5 |  | cnfcom.g |  | 
						
							| 6 |  | cnfcom.h |  | 
						
							| 7 |  | cnfcom.t |  | 
						
							| 8 |  | cnfcom.m |  | 
						
							| 9 |  | cnfcom.k |  | 
						
							| 10 |  | cnfcom.w |  | 
						
							| 11 |  | cnfcom2.1 |  | 
						
							| 12 |  | n0i |  | 
						
							| 13 | 11 12 | syl |  | 
						
							| 14 |  | omelon |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 1 15 2 | cantnff1o |  | 
						
							| 17 |  | f1ocnv |  | 
						
							| 18 |  | f1of |  | 
						
							| 19 | 16 17 18 | 3syl |  | 
						
							| 20 | 19 3 | ffvelcdmd |  | 
						
							| 21 | 4 20 | eqeltrid |  | 
						
							| 22 | 1 15 2 | cantnfs |  | 
						
							| 23 | 21 22 | mpbid |  | 
						
							| 24 | 23 | simpld |  | 
						
							| 25 | 24 | adantr |  | 
						
							| 26 | 25 | feqmptd |  | 
						
							| 27 |  | dif0 |  | 
						
							| 28 | 27 | eleq2i |  | 
						
							| 29 |  | simpr |  | 
						
							| 30 |  | ovexd |  | 
						
							| 31 | 1 15 2 5 21 | cantnfcl |  | 
						
							| 32 | 31 | simpld |  | 
						
							| 33 | 5 | oien |  | 
						
							| 34 | 30 32 33 | syl2anc |  | 
						
							| 35 | 34 | adantr |  | 
						
							| 36 | 29 35 | eqbrtrrd |  | 
						
							| 37 | 36 | ensymd |  | 
						
							| 38 |  | en0 |  | 
						
							| 39 | 37 38 | sylib |  | 
						
							| 40 |  | ss0b |  | 
						
							| 41 | 39 40 | sylibr |  | 
						
							| 42 | 2 | adantr |  | 
						
							| 43 |  | 0ex |  | 
						
							| 44 | 43 | a1i |  | 
						
							| 45 | 25 41 42 44 | suppssr |  | 
						
							| 46 | 28 45 | sylan2br |  | 
						
							| 47 | 46 | mpteq2dva |  | 
						
							| 48 | 26 47 | eqtrd |  | 
						
							| 49 |  | fconstmpt |  | 
						
							| 50 | 48 49 | eqtr4di |  | 
						
							| 51 | 50 | fveq2d |  | 
						
							| 52 | 4 | fveq2i |  | 
						
							| 53 |  | f1ocnvfv2 |  | 
						
							| 54 | 16 3 53 | syl2anc |  | 
						
							| 55 | 52 54 | eqtrid |  | 
						
							| 56 | 55 | adantr |  | 
						
							| 57 |  | peano1 |  | 
						
							| 58 | 57 | a1i |  | 
						
							| 59 | 1 15 2 58 | cantnf0 |  | 
						
							| 60 | 59 | adantr |  | 
						
							| 61 | 51 56 60 | 3eqtr3d |  | 
						
							| 62 | 13 61 | mtand |  | 
						
							| 63 |  | nnlim |  | 
						
							| 64 | 31 63 | simpl2im |  | 
						
							| 65 |  | ioran |  | 
						
							| 66 | 62 64 65 | sylanbrc |  | 
						
							| 67 | 5 | oicl |  | 
						
							| 68 |  | unizlim |  | 
						
							| 69 | 67 68 | ax-mp |  | 
						
							| 70 | 66 69 | sylnibr |  | 
						
							| 71 |  | orduniorsuc |  | 
						
							| 72 | 67 71 | mp1i |  | 
						
							| 73 | 72 | ord |  | 
						
							| 74 | 70 73 | mpd |  |