Metamath Proof Explorer


Theorem cnre2csqima

Description: Image of a centered square by the canonical bijection from ( RR X. RR ) to CC . (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Hypothesis cnre2csqima.1 F=x,yx+iy
Assertion cnre2csqima X2Y2D+Y1stXD1stX+D×2ndXD2ndX+DFYFX<DFYFX<D

Proof

Step Hyp Ref Expression
1 cnre2csqima.1 F=x,yx+iy
2 ioossre 1stXD1stX+D
3 ioossre 2ndXD2ndX+D
4 xpinpreima2 1stXD1stX+D2ndXD2ndX+D1stXD1stX+D×2ndXD2ndX+D=1st2-11stXD1stX+D2nd2-12ndXD2ndX+D
5 4 eleq2d 1stXD1stX+D2ndXD2ndX+DY1stXD1stX+D×2ndXD2ndX+DY1st2-11stXD1stX+D2nd2-12ndXD2ndX+D
6 2 3 5 mp2an Y1stXD1stX+D×2ndXD2ndX+DY1st2-11stXD1stX+D2nd2-12ndXD2ndX+D
7 elin Y1st2-11stXD1stX+D2nd2-12ndXD2ndX+DY1st2-11stXD1stX+DY2nd2-12ndXD2ndX+D
8 simpl xyx
9 8 recnd xyx
10 ax-icn i
11 10 a1i xyi
12 simpr xyy
13 12 recnd xyy
14 11 13 mulcld xyiy
15 9 14 addcld xyx+iy
16 reval x+iyx+iy=x+iy+x+iy2
17 15 16 syl xyx+iy=x+iy+x+iy2
18 crre xyx+iy=x
19 17 18 eqtr3d xyx+iy+x+iy2=x
20 19 mpoeq3ia x,yx+iy+x+iy2=x,yx
21 15 adantl xyx+iy
22 1 a1i F=x,yx+iy
23 df-re =zz+z2
24 23 a1i =zz+z2
25 id z=x+iyz=x+iy
26 fveq2 z=x+iyz=x+iy
27 25 26 oveq12d z=x+iyz+z=x+iy+x+iy
28 27 oveq1d z=x+iyz+z2=x+iy+x+iy2
29 21 22 24 28 fmpoco F=x,yx+iy+x+iy2
30 29 mptru F=x,yx+iy+x+iy2
31 df1stres 1st2=x,yx
32 20 30 31 3eqtr4ri 1st2=F
33 15 rgen2 xyx+iy
34 1 fnmpo xyx+iyFFn2
35 33 34 ax-mp FFn2
36 fo1st 1st:VontoV
37 fofn 1st:VontoV1stFnV
38 36 37 ax-mp 1stFnV
39 xp1st z21stz
40 1 rnmpo ranF=z|xyz=x+iy
41 simpr xyz=x+iyz=x+iy
42 15 adantr xyz=x+iyx+iy
43 41 42 eqeltrd xyz=x+iyz
44 43 ex xyz=x+iyz
45 44 rexlimivv xyz=x+iyz
46 45 abssi z|xyz=x+iy
47 40 46 eqsstri ranF
48 simpl zranFuranFzranF
49 47 48 sselid zranFuranFz
50 simpr zranFuranFuranF
51 47 50 sselid zranFuranFu
52 49 51 resubd zranFuranFzu=zu
53 32 35 38 39 52 cnre2csqlem X2Y2D+Y1st2-11stXD1stX+DFYFX<D
54 imval x+iyx+iy=x+iyi
55 15 54 syl xyx+iy=x+iyi
56 crim xyx+iy=y
57 55 56 eqtr3d xyx+iyi=y
58 57 mpoeq3ia x,yx+iyi=x,yy
59 df-im =zzi
60 59 a1i =zzi
61 fvoveq1 z=x+iyzi=x+iyi
62 21 22 60 61 fmpoco F=x,yx+iyi
63 62 mptru F=x,yx+iyi
64 df2ndres 2nd2=x,yy
65 58 63 64 3eqtr4ri 2nd2=F
66 fo2nd 2nd:VontoV
67 fofn 2nd:VontoV2ndFnV
68 66 67 ax-mp 2ndFnV
69 xp2nd z22ndz
70 49 51 imsubd zranFuranFzu=zu
71 65 35 68 69 70 cnre2csqlem X2Y2D+Y2nd2-12ndXD2ndX+DFYFX<D
72 53 71 anim12d X2Y2D+Y1st2-11stXD1stX+DY2nd2-12ndXD2ndX+DFYFX<DFYFX<D
73 7 72 biimtrid X2Y2D+Y1st2-11stXD1stX+D2nd2-12ndXD2ndX+DFYFX<DFYFX<D
74 6 73 biimtrid X2Y2D+Y1stXD1stX+D×2ndXD2ndX+DFYFX<DFYFX<D