Description: Image of a centered square by the canonical bijection from ( RR X. RR ) to CC . (Contributed by Thierry Arnoux, 27-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cnre2csqima.1 | |
|
Assertion | cnre2csqima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnre2csqima.1 | |
|
2 | ioossre | |
|
3 | ioossre | |
|
4 | xpinpreima2 | |
|
5 | 4 | eleq2d | |
6 | 2 3 5 | mp2an | |
7 | elin | |
|
8 | simpl | |
|
9 | 8 | recnd | |
10 | ax-icn | |
|
11 | 10 | a1i | |
12 | simpr | |
|
13 | 12 | recnd | |
14 | 11 13 | mulcld | |
15 | 9 14 | addcld | |
16 | reval | |
|
17 | 15 16 | syl | |
18 | crre | |
|
19 | 17 18 | eqtr3d | |
20 | 19 | mpoeq3ia | |
21 | 15 | adantl | |
22 | 1 | a1i | |
23 | df-re | |
|
24 | 23 | a1i | |
25 | id | |
|
26 | fveq2 | |
|
27 | 25 26 | oveq12d | |
28 | 27 | oveq1d | |
29 | 21 22 24 28 | fmpoco | |
30 | 29 | mptru | |
31 | df1stres | |
|
32 | 20 30 31 | 3eqtr4ri | |
33 | 15 | rgen2 | |
34 | 1 | fnmpo | |
35 | 33 34 | ax-mp | |
36 | fo1st | |
|
37 | fofn | |
|
38 | 36 37 | ax-mp | |
39 | xp1st | |
|
40 | 1 | rnmpo | |
41 | simpr | |
|
42 | 15 | adantr | |
43 | 41 42 | eqeltrd | |
44 | 43 | ex | |
45 | 44 | rexlimivv | |
46 | 45 | abssi | |
47 | 40 46 | eqsstri | |
48 | simpl | |
|
49 | 47 48 | sselid | |
50 | simpr | |
|
51 | 47 50 | sselid | |
52 | 49 51 | resubd | |
53 | 32 35 38 39 52 | cnre2csqlem | |
54 | imval | |
|
55 | 15 54 | syl | |
56 | crim | |
|
57 | 55 56 | eqtr3d | |
58 | 57 | mpoeq3ia | |
59 | df-im | |
|
60 | 59 | a1i | |
61 | fvoveq1 | |
|
62 | 21 22 60 61 | fmpoco | |
63 | 62 | mptru | |
64 | df2ndres | |
|
65 | 58 63 64 | 3eqtr4ri | |
66 | fo2nd | |
|
67 | fofn | |
|
68 | 66 67 | ax-mp | |
69 | xp2nd | |
|
70 | 49 51 | imsubd | |
71 | 65 35 68 69 70 | cnre2csqlem | |
72 | 53 71 | anim12d | |
73 | 7 72 | biimtrid | |
74 | 6 73 | biimtrid | |