Step |
Hyp |
Ref |
Expression |
1 |
|
cnre2csqima.1 |
|
2 |
|
ioossre |
|
3 |
|
ioossre |
|
4 |
|
xpinpreima2 |
|
5 |
4
|
eleq2d |
|
6 |
2 3 5
|
mp2an |
|
7 |
|
elin |
|
8 |
|
simpl |
|
9 |
8
|
recnd |
|
10 |
|
ax-icn |
|
11 |
10
|
a1i |
|
12 |
|
simpr |
|
13 |
12
|
recnd |
|
14 |
11 13
|
mulcld |
|
15 |
9 14
|
addcld |
|
16 |
|
reval |
|
17 |
15 16
|
syl |
|
18 |
|
crre |
|
19 |
17 18
|
eqtr3d |
|
20 |
19
|
mpoeq3ia |
|
21 |
15
|
adantl |
|
22 |
1
|
a1i |
|
23 |
|
df-re |
|
24 |
23
|
a1i |
|
25 |
|
id |
|
26 |
|
fveq2 |
|
27 |
25 26
|
oveq12d |
|
28 |
27
|
oveq1d |
|
29 |
21 22 24 28
|
fmpoco |
|
30 |
29
|
mptru |
|
31 |
|
df1stres |
|
32 |
20 30 31
|
3eqtr4ri |
|
33 |
15
|
rgen2 |
|
34 |
1
|
fnmpo |
|
35 |
33 34
|
ax-mp |
|
36 |
|
fo1st |
|
37 |
|
fofn |
|
38 |
36 37
|
ax-mp |
|
39 |
|
xp1st |
|
40 |
1
|
rnmpo |
|
41 |
|
simpr |
|
42 |
15
|
adantr |
|
43 |
41 42
|
eqeltrd |
|
44 |
43
|
ex |
|
45 |
44
|
rexlimivv |
|
46 |
45
|
abssi |
|
47 |
40 46
|
eqsstri |
|
48 |
|
simpl |
|
49 |
47 48
|
sselid |
|
50 |
|
simpr |
|
51 |
47 50
|
sselid |
|
52 |
49 51
|
resubd |
|
53 |
32 35 38 39 52
|
cnre2csqlem |
|
54 |
|
imval |
|
55 |
15 54
|
syl |
|
56 |
|
crim |
|
57 |
55 56
|
eqtr3d |
|
58 |
57
|
mpoeq3ia |
|
59 |
|
df-im |
|
60 |
59
|
a1i |
|
61 |
|
fvoveq1 |
|
62 |
21 22 60 61
|
fmpoco |
|
63 |
62
|
mptru |
|
64 |
|
df2ndres |
|
65 |
58 63 64
|
3eqtr4ri |
|
66 |
|
fo2nd |
|
67 |
|
fofn |
|
68 |
66 67
|
ax-mp |
|
69 |
|
xp2nd |
|
70 |
49 51
|
imsubd |
|
71 |
65 35 68 69 70
|
cnre2csqlem |
|
72 |
53 71
|
anim12d |
|
73 |
7 72
|
syl5bi |
|
74 |
6 73
|
syl5bi |
|