Metamath Proof Explorer


Theorem cnre2csqima

Description: Image of a centered square by the canonical bijection from ( RR X. RR ) to CC . (Contributed by Thierry Arnoux, 27-Sep-2017)

Ref Expression
Hypothesis cnre2csqima.1 F = x , y x + i y
Assertion cnre2csqima X 2 Y 2 D + Y 1 st X D 1 st X + D × 2 nd X D 2 nd X + D F Y F X < D F Y F X < D

Proof

Step Hyp Ref Expression
1 cnre2csqima.1 F = x , y x + i y
2 ioossre 1 st X D 1 st X + D
3 ioossre 2 nd X D 2 nd X + D
4 xpinpreima2 1 st X D 1 st X + D 2 nd X D 2 nd X + D 1 st X D 1 st X + D × 2 nd X D 2 nd X + D = 1 st 2 -1 1 st X D 1 st X + D 2 nd 2 -1 2 nd X D 2 nd X + D
5 4 eleq2d 1 st X D 1 st X + D 2 nd X D 2 nd X + D Y 1 st X D 1 st X + D × 2 nd X D 2 nd X + D Y 1 st 2 -1 1 st X D 1 st X + D 2 nd 2 -1 2 nd X D 2 nd X + D
6 2 3 5 mp2an Y 1 st X D 1 st X + D × 2 nd X D 2 nd X + D Y 1 st 2 -1 1 st X D 1 st X + D 2 nd 2 -1 2 nd X D 2 nd X + D
7 elin Y 1 st 2 -1 1 st X D 1 st X + D 2 nd 2 -1 2 nd X D 2 nd X + D Y 1 st 2 -1 1 st X D 1 st X + D Y 2 nd 2 -1 2 nd X D 2 nd X + D
8 simpl x y x
9 8 recnd x y x
10 ax-icn i
11 10 a1i x y i
12 simpr x y y
13 12 recnd x y y
14 11 13 mulcld x y i y
15 9 14 addcld x y x + i y
16 reval x + i y x + i y = x + i y + x + i y 2
17 15 16 syl x y x + i y = x + i y + x + i y 2
18 crre x y x + i y = x
19 17 18 eqtr3d x y x + i y + x + i y 2 = x
20 19 mpoeq3ia x , y x + i y + x + i y 2 = x , y x
21 15 adantl x y x + i y
22 1 a1i F = x , y x + i y
23 df-re = z z + z 2
24 23 a1i = z z + z 2
25 id z = x + i y z = x + i y
26 fveq2 z = x + i y z = x + i y
27 25 26 oveq12d z = x + i y z + z = x + i y + x + i y
28 27 oveq1d z = x + i y z + z 2 = x + i y + x + i y 2
29 21 22 24 28 fmpoco F = x , y x + i y + x + i y 2
30 29 mptru F = x , y x + i y + x + i y 2
31 df1stres 1 st 2 = x , y x
32 20 30 31 3eqtr4ri 1 st 2 = F
33 15 rgen2 x y x + i y
34 1 fnmpo x y x + i y F Fn 2
35 33 34 ax-mp F Fn 2
36 fo1st 1 st : V onto V
37 fofn 1 st : V onto V 1 st Fn V
38 36 37 ax-mp 1 st Fn V
39 xp1st z 2 1 st z
40 1 rnmpo ran F = z | x y z = x + i y
41 simpr x y z = x + i y z = x + i y
42 15 adantr x y z = x + i y x + i y
43 41 42 eqeltrd x y z = x + i y z
44 43 ex x y z = x + i y z
45 44 rexlimivv x y z = x + i y z
46 45 abssi z | x y z = x + i y
47 40 46 eqsstri ran F
48 simpl z ran F u ran F z ran F
49 47 48 sselid z ran F u ran F z
50 simpr z ran F u ran F u ran F
51 47 50 sselid z ran F u ran F u
52 49 51 resubd z ran F u ran F z u = z u
53 32 35 38 39 52 cnre2csqlem X 2 Y 2 D + Y 1 st 2 -1 1 st X D 1 st X + D F Y F X < D
54 imval x + i y x + i y = x + i y i
55 15 54 syl x y x + i y = x + i y i
56 crim x y x + i y = y
57 55 56 eqtr3d x y x + i y i = y
58 57 mpoeq3ia x , y x + i y i = x , y y
59 df-im = z z i
60 59 a1i = z z i
61 fvoveq1 z = x + i y z i = x + i y i
62 21 22 60 61 fmpoco F = x , y x + i y i
63 62 mptru F = x , y x + i y i
64 df2ndres 2 nd 2 = x , y y
65 58 63 64 3eqtr4ri 2 nd 2 = F
66 fo2nd 2 nd : V onto V
67 fofn 2 nd : V onto V 2 nd Fn V
68 66 67 ax-mp 2 nd Fn V
69 xp2nd z 2 2 nd z
70 49 51 imsubd z ran F u ran F z u = z u
71 65 35 68 69 70 cnre2csqlem X 2 Y 2 D + Y 2 nd 2 -1 2 nd X D 2 nd X + D F Y F X < D
72 53 71 anim12d X 2 Y 2 D + Y 1 st 2 -1 1 st X D 1 st X + D Y 2 nd 2 -1 2 nd X D 2 nd X + D F Y F X < D F Y F X < D
73 7 72 syl5bi X 2 Y 2 D + Y 1 st 2 -1 1 st X D 1 st X + D 2 nd 2 -1 2 nd X D 2 nd X + D F Y F X < D F Y F X < D
74 6 73 syl5bi X 2 Y 2 D + Y 1 st X D 1 st X + D × 2 nd X D 2 nd X + D F Y F X < D F Y F X < D