Metamath Proof Explorer


Theorem cply1mul

Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cply1mul.p P=Poly1R
cply1mul.b B=BaseP
cply1mul.0 0˙=0R
cply1mul.m ×˙=P
Assertion cply1mul RRingFBGBccoe1Fc=0˙coe1Gc=0˙ccoe1F×˙Gc=0˙

Proof

Step Hyp Ref Expression
1 cply1mul.p P=Poly1R
2 cply1mul.b B=BaseP
3 cply1mul.0 0˙=0R
4 cply1mul.m ×˙=P
5 eqid R=R
6 1 4 5 2 coe1mul RRingFBGBcoe1F×˙G=s0Rk=0scoe1FkRcoe1Gsk
7 6 3expb RRingFBGBcoe1F×˙G=s0Rk=0scoe1FkRcoe1Gsk
8 7 adantr RRingFBGBccoe1Fc=0˙coe1Gc=0˙coe1F×˙G=s0Rk=0scoe1FkRcoe1Gsk
9 8 adantr RRingFBGBccoe1Fc=0˙coe1Gc=0˙ncoe1F×˙G=s0Rk=0scoe1FkRcoe1Gsk
10 oveq2 s=n0s=0n
11 fvoveq1 s=ncoe1Gsk=coe1Gnk
12 11 oveq2d s=ncoe1FkRcoe1Gsk=coe1FkRcoe1Gnk
13 10 12 mpteq12dv s=nk0scoe1FkRcoe1Gsk=k0ncoe1FkRcoe1Gnk
14 13 oveq2d s=nRk=0scoe1FkRcoe1Gsk=Rk=0ncoe1FkRcoe1Gnk
15 14 adantl RRingFBGBccoe1Fc=0˙coe1Gc=0˙ns=nRk=0scoe1FkRcoe1Gsk=Rk=0ncoe1FkRcoe1Gnk
16 nnnn0 nn0
17 16 adantl RRingFBGBccoe1Fc=0˙coe1Gc=0˙nn0
18 ovexd RRingFBGBccoe1Fc=0˙coe1Gc=0˙nRk=0ncoe1FkRcoe1GnkV
19 9 15 17 18 fvmptd RRingFBGBccoe1Fc=0˙coe1Gc=0˙ncoe1F×˙Gn=Rk=0ncoe1FkRcoe1Gnk
20 r19.26 ccoe1Fc=0˙coe1Gc=0˙ccoe1Fc=0˙ccoe1Gc=0˙
21 oveq2 k=0nk=n0
22 nncn nn
23 22 subid1d nn0=n
24 23 adantr nk0nn0=n
25 21 24 sylan9eqr nk0nk=0nk=n
26 simpll nk0nk=0n
27 25 26 eqeltrd nk0nk=0nk
28 fveqeq2 c=nkcoe1Gc=0˙coe1Gnk=0˙
29 28 rspcv nkccoe1Gc=0˙coe1Gnk=0˙
30 27 29 syl nk0nk=0ccoe1Gc=0˙coe1Gnk=0˙
31 oveq2 coe1Gnk=0˙coe1FkRcoe1Gnk=coe1FkR0˙
32 simpll RRingFBGBnk0nk=0RRing
33 simprl RRingFBGBFB
34 elfznn0 k0nk0
35 34 adantl nk0nk0
36 35 adantr nk0nk=0k0
37 eqid coe1F=coe1F
38 eqid BaseR=BaseR
39 37 2 1 38 coe1fvalcl FBk0coe1FkBaseR
40 33 36 39 syl2an RRingFBGBnk0nk=0coe1FkBaseR
41 38 5 3 ringrz RRingcoe1FkBaseRcoe1FkR0˙=0˙
42 32 40 41 syl2anc RRingFBGBnk0nk=0coe1FkR0˙=0˙
43 31 42 sylan9eqr RRingFBGBnk0nk=0coe1Gnk=0˙coe1FkRcoe1Gnk=0˙
44 43 ex RRingFBGBnk0nk=0coe1Gnk=0˙coe1FkRcoe1Gnk=0˙
45 44 expcom nk0nk=0RRingFBGBcoe1Gnk=0˙coe1FkRcoe1Gnk=0˙
46 45 com23 nk0nk=0coe1Gnk=0˙RRingFBGBcoe1FkRcoe1Gnk=0˙
47 30 46 syldc ccoe1Gc=0˙nk0nk=0RRingFBGBcoe1FkRcoe1Gnk=0˙
48 47 expd ccoe1Gc=0˙nk0nk=0RRingFBGBcoe1FkRcoe1Gnk=0˙
49 48 com24 ccoe1Gc=0˙RRingFBGBk=0nk0ncoe1FkRcoe1Gnk=0˙
50 49 adantl ccoe1Fc=0˙ccoe1Gc=0˙RRingFBGBk=0nk0ncoe1FkRcoe1Gnk=0˙
51 50 com13 k=0RRingFBGBccoe1Fc=0˙ccoe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
52 neqne ¬k=0k0
53 52 34 anim12ci ¬k=0k0nk0k0
54 elnnne0 kk0k0
55 53 54 sylibr ¬k=0k0nk
56 fveqeq2 c=kcoe1Fc=0˙coe1Fk=0˙
57 56 rspcv kccoe1Fc=0˙coe1Fk=0˙
58 55 57 syl ¬k=0k0nccoe1Fc=0˙coe1Fk=0˙
59 oveq1 coe1Fk=0˙coe1FkRcoe1Gnk=0˙Rcoe1Gnk
60 simpll RRingFBGBk0nRRing
61 2 eleq2i GBGBaseP
62 61 biimpi GBGBaseP
63 62 adantl FBGBGBaseP
64 63 adantl RRingFBGBGBaseP
65 fznn0sub k0nnk0
66 eqid coe1G=coe1G
67 eqid BaseP=BaseP
68 66 67 1 38 coe1fvalcl GBasePnk0coe1GnkBaseR
69 64 65 68 syl2an RRingFBGBk0ncoe1GnkBaseR
70 38 5 3 ringlz RRingcoe1GnkBaseR0˙Rcoe1Gnk=0˙
71 60 69 70 syl2anc RRingFBGBk0n0˙Rcoe1Gnk=0˙
72 59 71 sylan9eqr RRingFBGBk0ncoe1Fk=0˙coe1FkRcoe1Gnk=0˙
73 72 ex RRingFBGBk0ncoe1Fk=0˙coe1FkRcoe1Gnk=0˙
74 73 ex RRingFBGBk0ncoe1Fk=0˙coe1FkRcoe1Gnk=0˙
75 74 com23 RRingFBGBcoe1Fk=0˙k0ncoe1FkRcoe1Gnk=0˙
76 75 a1dd RRingFBGBcoe1Fk=0˙nk0ncoe1FkRcoe1Gnk=0˙
77 76 com14 k0ncoe1Fk=0˙nRRingFBGBcoe1FkRcoe1Gnk=0˙
78 77 adantl ¬k=0k0ncoe1Fk=0˙nRRingFBGBcoe1FkRcoe1Gnk=0˙
79 58 78 syld ¬k=0k0nccoe1Fc=0˙nRRingFBGBcoe1FkRcoe1Gnk=0˙
80 79 com24 ¬k=0k0nRRingFBGBnccoe1Fc=0˙coe1FkRcoe1Gnk=0˙
81 80 ex ¬k=0k0nRRingFBGBnccoe1Fc=0˙coe1FkRcoe1Gnk=0˙
82 81 com14 nk0nRRingFBGB¬k=0ccoe1Fc=0˙coe1FkRcoe1Gnk=0˙
83 82 imp nk0nRRingFBGB¬k=0ccoe1Fc=0˙coe1FkRcoe1Gnk=0˙
84 83 com14 ccoe1Fc=0˙RRingFBGB¬k=0nk0ncoe1FkRcoe1Gnk=0˙
85 84 adantr ccoe1Fc=0˙ccoe1Gc=0˙RRingFBGB¬k=0nk0ncoe1FkRcoe1Gnk=0˙
86 85 com13 ¬k=0RRingFBGBccoe1Fc=0˙ccoe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
87 51 86 pm2.61i RRingFBGBccoe1Fc=0˙ccoe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
88 20 87 biimtrid RRingFBGBccoe1Fc=0˙coe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
89 88 imp RRingFBGBccoe1Fc=0˙coe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
90 89 impl RRingFBGBccoe1Fc=0˙coe1Gc=0˙nk0ncoe1FkRcoe1Gnk=0˙
91 90 mpteq2dva RRingFBGBccoe1Fc=0˙coe1Gc=0˙nk0ncoe1FkRcoe1Gnk=k0n0˙
92 91 oveq2d RRingFBGBccoe1Fc=0˙coe1Gc=0˙nRk=0ncoe1FkRcoe1Gnk=Rk=0n0˙
93 ringmnd RRingRMnd
94 ovexd RRing0nV
95 3 gsumz RMnd0nVRk=0n0˙=0˙
96 93 94 95 syl2anc RRingRk=0n0˙=0˙
97 96 adantr RRingFBGBRk=0n0˙=0˙
98 97 adantr RRingFBGBccoe1Fc=0˙coe1Gc=0˙Rk=0n0˙=0˙
99 98 adantr RRingFBGBccoe1Fc=0˙coe1Gc=0˙nRk=0n0˙=0˙
100 19 92 99 3eqtrd RRingFBGBccoe1Fc=0˙coe1Gc=0˙ncoe1F×˙Gn=0˙
101 100 ralrimiva RRingFBGBccoe1Fc=0˙coe1Gc=0˙ncoe1F×˙Gn=0˙
102 fveqeq2 c=ncoe1F×˙Gc=0˙coe1F×˙Gn=0˙
103 102 cbvralvw ccoe1F×˙Gc=0˙ncoe1F×˙Gn=0˙
104 101 103 sylibr RRingFBGBccoe1Fc=0˙coe1Gc=0˙ccoe1F×˙Gc=0˙
105 104 ex RRingFBGBccoe1Fc=0˙coe1Gc=0˙ccoe1F×˙Gc=0˙