Metamath Proof Explorer


Theorem cpmatacl

Description: The set of all constant polynomial matrices over a ring R is closed under addition. (Contributed by AV, 17-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatacl NFinRRingxSySx+CyS

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 eqid BaseC=BaseC
5 eqid BaseR=BaseR
6 eqid algScP=algScP
7 1 2 3 4 5 6 cpmatelimp2 NFinRRingxSxBaseCiNjNaBaseRixj=algScPa
8 1 2 3 4 5 6 cpmatelimp2 NFinRRingySyBaseCiNjNbBaseRiyj=algScPb
9 r19.26-2 iNjNaBaseRixj=algScPabBaseRiyj=algScPbiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPb
10 eqid +R=+R
11 5 10 ringacl RRingaBaseRbBaseRa+RbBaseR
12 11 3expb RRingaBaseRbBaseRa+RbBaseR
13 2 ply1sca RRingR=ScalarP
14 13 eqcomd RRingScalarP=R
15 14 fveq2d RRing+ScalarP=+R
16 15 oveqd RRinga+ScalarPb=a+Rb
17 16 eleq1d RRinga+ScalarPbBaseRa+RbBaseR
18 17 adantr RRingaBaseRbBaseRa+ScalarPbBaseRa+RbBaseR
19 12 18 mpbird RRingaBaseRbBaseRa+ScalarPbBaseR
20 19 ad5ant25 NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRa+ScalarPbBaseR
21 20 adantr NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPaa+ScalarPbBaseR
22 fveq2 c=a+ScalarPbalgScPc=algScPa+ScalarPb
23 22 eqeq2d c=a+ScalarPbix+Cyj=algScPcix+Cyj=algScPa+ScalarPb
24 23 adantl NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPac=a+ScalarPbix+Cyj=algScPcix+Cyj=algScPa+ScalarPb
25 simpr NFinRRingyBaseCxBaseCyBaseCxBaseC
26 25 ancomd NFinRRingyBaseCxBaseCxBaseCyBaseC
27 26 anim1i NFinRRingyBaseCxBaseCiNjNxBaseCyBaseCiNjN
28 27 ad2antrr NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPaxBaseCyBaseCiNjN
29 eqid +C=+C
30 eqid +P=+P
31 3 4 29 30 matplusgcell xBaseCyBaseCiNjNix+Cyj=ixj+Piyj
32 28 31 syl NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPaix+Cyj=ixj+Piyj
33 oveq12 ixj=algScPaiyj=algScPbixj+Piyj=algScPa+PalgScPb
34 33 ancoms iyj=algScPbixj=algScPaixj+Piyj=algScPa+PalgScPb
35 eqid ScalarP=ScalarP
36 2 ply1ring RRingPRing
37 36 ad4antlr NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRPRing
38 2 ply1lmod RRingPLMod
39 38 ad4antlr NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRPLMod
40 6 35 37 39 asclghm NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRalgScPScalarPGrpHomP
41 13 adantl NFinRRingR=ScalarP
42 41 fveq2d NFinRRingBaseR=BaseScalarP
43 42 eleq2d NFinRRingaBaseRaBaseScalarP
44 43 biimpd NFinRRingaBaseRaBaseScalarP
45 44 ad2antrr NFinRRingyBaseCxBaseCiNjNaBaseRaBaseScalarP
46 45 adantrd NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRaBaseScalarP
47 46 imp NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRaBaseScalarP
48 13 ad3antlr NFinRRingyBaseCxBaseCiNjNR=ScalarP
49 48 fveq2d NFinRRingyBaseCxBaseCiNjNBaseR=BaseScalarP
50 49 eleq2d NFinRRingyBaseCxBaseCiNjNbBaseRbBaseScalarP
51 50 biimpd NFinRRingyBaseCxBaseCiNjNbBaseRbBaseScalarP
52 51 adantld NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRbBaseScalarP
53 52 imp NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRbBaseScalarP
54 eqid BaseScalarP=BaseScalarP
55 eqid +ScalarP=+ScalarP
56 54 55 30 ghmlin algScPScalarPGrpHomPaBaseScalarPbBaseScalarPalgScPa+ScalarPb=algScPa+PalgScPb
57 40 47 53 56 syl3anc NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRalgScPa+ScalarPb=algScPa+PalgScPb
58 57 eqcomd NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRalgScPa+PalgScPb=algScPa+ScalarPb
59 34 58 sylan9eqr NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPaixj+Piyj=algScPa+ScalarPb
60 32 59 eqtrd NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPaix+Cyj=algScPa+ScalarPb
61 21 24 60 rspcedvd NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPacBaseRix+Cyj=algScPc
62 61 exp32 NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPacBaseRix+Cyj=algScPc
63 62 anassrs NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPacBaseRix+Cyj=algScPc
64 63 rexlimdva NFinRRingyBaseCxBaseCiNjNaBaseRbBaseRiyj=algScPbixj=algScPacBaseRix+Cyj=algScPc
65 64 com23 NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPabBaseRiyj=algScPbcBaseRix+Cyj=algScPc
66 65 rexlimdva NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPabBaseRiyj=algScPbcBaseRix+Cyj=algScPc
67 66 impd NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPabBaseRiyj=algScPbcBaseRix+Cyj=algScPc
68 67 ralimdvva NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPabBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
69 9 68 biimtrrid NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
70 69 expd NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
71 70 expr NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
72 71 impd NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
73 72 ex NFinRRingyBaseCxBaseCiNjNaBaseRixj=algScPaiNjNbBaseRiyj=algScPbiNjNcBaseRix+Cyj=algScPc
74 73 com34 NFinRRingyBaseCiNjNbBaseRiyj=algScPbxBaseCiNjNaBaseRixj=algScPaiNjNcBaseRix+Cyj=algScPc
75 74 impd NFinRRingyBaseCiNjNbBaseRiyj=algScPbxBaseCiNjNaBaseRixj=algScPaiNjNcBaseRix+Cyj=algScPc
76 8 75 syld NFinRRingySxBaseCiNjNaBaseRixj=algScPaiNjNcBaseRix+Cyj=algScPc
77 76 com23 NFinRRingxBaseCiNjNaBaseRixj=algScPaySiNjNcBaseRix+Cyj=algScPc
78 7 77 syld NFinRRingxSySiNjNcBaseRix+Cyj=algScPc
79 78 imp32 NFinRRingxSySiNjNcBaseRix+Cyj=algScPc
80 simpl NFinRRingNFin
81 80 adantr NFinRRingxSySNFin
82 simpr NFinRRingRRing
83 82 adantr NFinRRingxSySRRing
84 2 3 pmatring NFinRRingCRing
85 84 adantr NFinRRingxSySCRing
86 simpl xSySxS
87 86 anim2i NFinRRingxSySNFinRRingxS
88 df-3an NFinRRingxSNFinRRingxS
89 87 88 sylibr NFinRRingxSySNFinRRingxS
90 1 2 3 4 cpmatpmat NFinRRingxSxBaseC
91 89 90 syl NFinRRingxSySxBaseC
92 simpr xSySyS
93 92 anim2i NFinRRingxSySNFinRRingyS
94 df-3an NFinRRingySNFinRRingyS
95 93 94 sylibr NFinRRingxSySNFinRRingyS
96 1 2 3 4 cpmatpmat NFinRRingySyBaseC
97 95 96 syl NFinRRingxSySyBaseC
98 4 29 ringacl CRingxBaseCyBaseCx+CyBaseC
99 85 91 97 98 syl3anc NFinRRingxSySx+CyBaseC
100 1 2 3 4 5 6 cpmatel2 NFinRRingx+CyBaseCx+CySiNjNcBaseRix+Cyj=algScPc
101 81 83 99 100 syl3anc NFinRRingxSySx+CySiNjNcBaseRix+Cyj=algScPc
102 79 101 mpbird NFinRRingxSySx+CyS
103 102 ralrimivva NFinRRingxSySx+CyS