| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
|
| 2 |
1
|
oveq2d |
|
| 3 |
2
|
fvoveq1d |
|
| 4 |
3
|
eqeq2d |
|
| 5 |
4
|
imbi2d |
|
| 6 |
|
oveq1 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
fvoveq1d |
|
| 9 |
8
|
eqeq2d |
|
| 10 |
9
|
imbi2d |
|
| 11 |
|
oveq1 |
|
| 12 |
11
|
oveq2d |
|
| 13 |
12
|
fvoveq1d |
|
| 14 |
13
|
eqeq2d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
17
|
fvoveq1d |
|
| 19 |
18
|
eqeq2d |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
zcn |
|
| 22 |
21
|
mul02d |
|
| 23 |
22
|
adantl |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
oveq2d |
|
| 26 |
|
elfzoelz |
|
| 27 |
26
|
zcnd |
|
| 28 |
27
|
addridd |
|
| 29 |
28
|
ad2antll |
|
| 30 |
25 29
|
eqtrd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
|
zmodidfzoimp |
|
| 33 |
32
|
ad2antll |
|
| 34 |
31 33
|
eqtr2d |
|
| 35 |
34
|
fveq2d |
|
| 36 |
|
fveq1 |
|
| 37 |
36
|
eqcoms |
|
| 38 |
37
|
ad2antrl |
|
| 39 |
38
|
adantl |
|
| 40 |
|
simprll |
|
| 41 |
|
simprlr |
|
| 42 |
|
elfzo0 |
|
| 43 |
|
nn0z |
|
| 44 |
43
|
adantr |
|
| 45 |
|
nn0z |
|
| 46 |
|
zmulcl |
|
| 47 |
45 46
|
sylan |
|
| 48 |
47
|
ancoms |
|
| 49 |
|
zaddcl |
|
| 50 |
44 48 49
|
syl2an |
|
| 51 |
|
simplr |
|
| 52 |
50 51
|
jca |
|
| 53 |
52
|
ex |
|
| 54 |
53
|
3adant3 |
|
| 55 |
42 54
|
sylbi |
|
| 56 |
55
|
adantl |
|
| 57 |
56
|
expd |
|
| 58 |
57
|
com12 |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
imp |
|
| 61 |
60
|
impcom |
|
| 62 |
|
zmodfzo |
|
| 63 |
61 62
|
syl |
|
| 64 |
|
cshwidxmod |
|
| 65 |
40 41 63 64
|
syl3anc |
|
| 66 |
|
nn0re |
|
| 67 |
|
zre |
|
| 68 |
|
nn0re |
|
| 69 |
|
nnrp |
|
| 70 |
|
remulcl |
|
| 71 |
70
|
ancoms |
|
| 72 |
|
readdcl |
|
| 73 |
71 72
|
sylan2 |
|
| 74 |
73
|
ancoms |
|
| 75 |
74
|
adantl |
|
| 76 |
|
simprll |
|
| 77 |
|
simpl |
|
| 78 |
|
modaddmod |
|
| 79 |
75 76 77 78
|
syl3anc |
|
| 80 |
|
recn |
|
| 81 |
80
|
adantl |
|
| 82 |
70
|
recnd |
|
| 83 |
82
|
ancoms |
|
| 84 |
83
|
adantr |
|
| 85 |
|
recn |
|
| 86 |
85
|
adantr |
|
| 87 |
86
|
adantr |
|
| 88 |
81 84 87
|
addassd |
|
| 89 |
|
recn |
|
| 90 |
89
|
adantl |
|
| 91 |
|
1cnd |
|
| 92 |
90 91 86
|
adddird |
|
| 93 |
85
|
mullidd |
|
| 94 |
93
|
adantr |
|
| 95 |
94
|
oveq2d |
|
| 96 |
92 95
|
eqtr2d |
|
| 97 |
96
|
adantr |
|
| 98 |
97
|
oveq2d |
|
| 99 |
88 98
|
eqtrd |
|
| 100 |
99
|
adantl |
|
| 101 |
100
|
oveq1d |
|
| 102 |
79 101
|
eqtrd |
|
| 103 |
102
|
ex |
|
| 104 |
69 103
|
syl |
|
| 105 |
104
|
expd |
|
| 106 |
105
|
com12 |
|
| 107 |
67 68 106
|
syl2an |
|
| 108 |
107
|
com13 |
|
| 109 |
66 108
|
syl |
|
| 110 |
109
|
imp |
|
| 111 |
110
|
3adant3 |
|
| 112 |
42 111
|
sylbi |
|
| 113 |
112
|
expd |
|
| 114 |
113
|
adantld |
|
| 115 |
114
|
adantl |
|
| 116 |
115
|
impcom |
|
| 117 |
116
|
impcom |
|
| 118 |
117
|
fveq2d |
|
| 119 |
39 65 118
|
3eqtrd |
|
| 120 |
119
|
eqeq2d |
|
| 121 |
120
|
biimpd |
|
| 122 |
121
|
ex |
|
| 123 |
122
|
a2d |
|
| 124 |
5 10 15 20 35 123
|
nn0ind |
|
| 125 |
124
|
com12 |
|
| 126 |
125
|
ralrimiv |
|
| 127 |
126
|
ex |
|