Metamath Proof Explorer


Theorem cvmlift2lem9a

Description: Lemma for cvmlift2 and cvmlift3 . (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses cvmlift2lem9a.b B=C
cvmlift2lem9a.y Y=K
cvmlift2lem9a.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
cvmlift2lem9a.f φFCCovMapJ
cvmlift2lem9a.h φH:YB
cvmlift2lem9a.g φFHKCnJ
cvmlift2lem9a.k φKTop
cvmlift2lem9a.1 φXY
cvmlift2lem9a.2 φTSA
cvmlift2lem9a.3 φWTHXW
cvmlift2lem9a.4 φMY
cvmlift2lem9a.6 φHMW
Assertion cvmlift2lem9a φHMK𝑡MCnC

Proof

Step Hyp Ref Expression
1 cvmlift2lem9a.b B=C
2 cvmlift2lem9a.y Y=K
3 cvmlift2lem9a.s S=kJs𝒫C|s=F-1kcsdsccd=FcC𝑡cHomeoJ𝑡k
4 cvmlift2lem9a.f φFCCovMapJ
5 cvmlift2lem9a.h φH:YB
6 cvmlift2lem9a.g φFHKCnJ
7 cvmlift2lem9a.k φKTop
8 cvmlift2lem9a.1 φXY
9 cvmlift2lem9a.2 φTSA
10 cvmlift2lem9a.3 φWTHXW
11 cvmlift2lem9a.4 φMY
12 cvmlift2lem9a.6 φHMW
13 cvmtop1 FCCovMapJCTop
14 4 13 syl φCTop
15 cnrest2r CTopK𝑡MCnC𝑡WK𝑡MCnC
16 14 15 syl φK𝑡MCnC𝑡WK𝑡MCnC
17 5 ffnd φHFnY
18 fnssres HFnYMYHMFnM
19 17 11 18 syl2anc φHMFnM
20 df-ima HM=ranHM
21 20 12 eqsstrrid φranHMW
22 df-f HM:MWHMFnMranHMW
23 19 21 22 sylanbrc φHM:MW
24 10 simpld φWT
25 3 cvmsf1o FCCovMapJTSAWTFW:W1-1 ontoA
26 4 9 24 25 syl3anc φFW:W1-1 ontoA
27 26 adantr φxC𝑡WFW:W1-1 ontoA
28 f1of1 FW:W1-1 ontoAFW:W1-1A
29 27 28 syl φxC𝑡WFW:W1-1A
30 1 toptopon CTopCTopOnB
31 14 30 sylib φCTopOnB
32 3 cvmsss TSATC
33 9 32 syl φTC
34 33 24 sseldd φWC
35 toponss CTopOnBWCWB
36 31 34 35 syl2anc φWB
37 resttopon CTopOnBWBC𝑡WTopOnW
38 31 36 37 syl2anc φC𝑡WTopOnW
39 toponss C𝑡WTopOnWxC𝑡WxW
40 38 39 sylan φxC𝑡WxW
41 f1imacnv FW:W1-1AxWFW-1FWx=x
42 29 40 41 syl2anc φxC𝑡WFW-1FWx=x
43 42 imaeq2d φxC𝑡WHM-1FW-1FWx=HM-1x
44 imaco HM-1FW-1FWx=HM-1FW-1FWx
45 cnvco FWHM-1=HM-1FW-1
46 cores ranHMWFWHM=FHM
47 21 46 syl φFWHM=FHM
48 resco FHM=FHM
49 47 48 eqtr4di φFWHM=FHM
50 49 adantr φxC𝑡WFWHM=FHM
51 50 cnveqd φxC𝑡WFWHM-1=FHM-1
52 45 51 eqtr3id φxC𝑡WHM-1FW-1=FHM-1
53 52 imaeq1d φxC𝑡WHM-1FW-1FWx=FHM-1FWx
54 44 53 eqtr3id φxC𝑡WHM-1FW-1FWx=FHM-1FWx
55 43 54 eqtr3d φxC𝑡WHM-1x=FHM-1FWx
56 2 cnrest FHKCnJMYFHMK𝑡MCnJ
57 6 11 56 syl2anc φFHMK𝑡MCnJ
58 57 adantr φxC𝑡WFHMK𝑡MCnJ
59 resima2 xWFWx=Fx
60 40 59 syl φxC𝑡WFWx=Fx
61 4 adantr φxC𝑡WFCCovMapJ
62 restopn2 CTopWCxC𝑡WxCxW
63 14 34 62 syl2anc φxC𝑡WxCxW
64 63 simprbda φxC𝑡WxC
65 cvmopn FCCovMapJxCFxJ
66 61 64 65 syl2anc φxC𝑡WFxJ
67 60 66 eqeltrd φxC𝑡WFWxJ
68 cnima FHMK𝑡MCnJFWxJFHM-1FWxK𝑡M
69 58 67 68 syl2anc φxC𝑡WFHM-1FWxK𝑡M
70 55 69 eqeltrd φxC𝑡WHM-1xK𝑡M
71 70 ralrimiva φxC𝑡WHM-1xK𝑡M
72 2 toptopon KTopKTopOnY
73 7 72 sylib φKTopOnY
74 resttopon KTopOnYMYK𝑡MTopOnM
75 73 11 74 syl2anc φK𝑡MTopOnM
76 iscn K𝑡MTopOnMC𝑡WTopOnWHMK𝑡MCnC𝑡WHM:MWxC𝑡WHM-1xK𝑡M
77 75 38 76 syl2anc φHMK𝑡MCnC𝑡WHM:MWxC𝑡WHM-1xK𝑡M
78 23 71 77 mpbir2and φHMK𝑡MCnC𝑡W
79 16 78 sseldd φHMK𝑡MCnC