Metamath Proof Explorer


Theorem cvmlift3lem5

Description: Lemma for cvmlift2 . (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses cvmlift3.b B=C
cvmlift3.y Y=K
cvmlift3.f φFCCovMapJ
cvmlift3.k φKSConn
cvmlift3.l φKN-Locally PConn
cvmlift3.o φOY
cvmlift3.g φGKCnJ
cvmlift3.p φPB
cvmlift3.e φFP=GO
cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
Assertion cvmlift3lem5 φFH=G

Proof

Step Hyp Ref Expression
1 cvmlift3.b B=C
2 cvmlift3.y Y=K
3 cvmlift3.f φFCCovMapJ
4 cvmlift3.k φKSConn
5 cvmlift3.l φKN-Locally PConn
6 cvmlift3.o φOY
7 cvmlift3.g φGKCnJ
8 cvmlift3.p φPB
9 cvmlift3.e φFP=GO
10 cvmlift3.h H=xYιzB|fIICnKf0=Of1=xιgIICnC|Fg=Gfg0=P1=z
11 eqid Hy=Hy
12 1 2 3 4 5 6 7 8 9 10 cvmlift3lem4 φyYHy=HyfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=Hy
13 11 12 mpbii φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=Hy
14 df-3an f0=Of1=yιgIICnC|Fg=Gfg0=P1=Hyf0=Of1=yιgIICnC|Fg=Gfg0=P1=Hy
15 eqid ιgIICnC|Fg=Gfg0=P=ιgIICnC|Fg=Gfg0=P
16 3 ad3antrrr φyYfIICnKf0=Of1=yFCCovMapJ
17 simplr φyYfIICnKf0=Of1=yfIICnK
18 7 ad3antrrr φyYfIICnKf0=Of1=yGKCnJ
19 cnco fIICnKGKCnJGfIICnJ
20 17 18 19 syl2anc φyYfIICnKf0=Of1=yGfIICnJ
21 8 ad3antrrr φyYfIICnKf0=Of1=yPB
22 simprl φyYfIICnKf0=Of1=yf0=O
23 22 fveq2d φyYfIICnKf0=Of1=yGf0=GO
24 iiuni 01=II
25 24 2 cnf fIICnKf:01Y
26 17 25 syl φyYfIICnKf0=Of1=yf:01Y
27 0elunit 001
28 fvco3 f:01Y001Gf0=Gf0
29 26 27 28 sylancl φyYfIICnKf0=Of1=yGf0=Gf0
30 9 ad3antrrr φyYfIICnKf0=Of1=yFP=GO
31 23 29 30 3eqtr4rd φyYfIICnKf0=Of1=yFP=Gf0
32 1 15 16 20 21 31 cvmliftiota φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=PIICnCFιgIICnC|Fg=Gfg0=P=GfιgIICnC|Fg=Gfg0=P0=P
33 32 simp2d φyYfIICnKf0=Of1=yFιgIICnC|Fg=Gfg0=P=Gf
34 33 fveq1d φyYfIICnKf0=Of1=yFιgIICnC|Fg=Gfg0=P1=Gf1
35 32 simp1d φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=PIICnC
36 24 1 cnf ιgIICnC|Fg=Gfg0=PIICnCιgIICnC|Fg=Gfg0=P:01B
37 35 36 syl φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P:01B
38 1elunit 101
39 fvco3 ιgIICnC|Fg=Gfg0=P:01B101FιgIICnC|Fg=Gfg0=P1=FιgIICnC|Fg=Gfg0=P1
40 37 38 39 sylancl φyYfIICnKf0=Of1=yFιgIICnC|Fg=Gfg0=P1=FιgIICnC|Fg=Gfg0=P1
41 fvco3 f:01Y101Gf1=Gf1
42 26 38 41 sylancl φyYfIICnKf0=Of1=yGf1=Gf1
43 simprr φyYfIICnKf0=Of1=yf1=y
44 43 fveq2d φyYfIICnKf0=Of1=yGf1=Gy
45 42 44 eqtrd φyYfIICnKf0=Of1=yGf1=Gy
46 34 40 45 3eqtr3d φyYfIICnKf0=Of1=yFιgIICnC|Fg=Gfg0=P1=Gy
47 fveqeq2 ιgIICnC|Fg=Gfg0=P1=HyFιgIICnC|Fg=Gfg0=P1=GyFHy=Gy
48 46 47 syl5ibcom φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=HyFHy=Gy
49 48 expimpd φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=HyFHy=Gy
50 14 49 biimtrid φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=HyFHy=Gy
51 50 rexlimdva φyYfIICnKf0=Of1=yιgIICnC|Fg=Gfg0=P1=HyFHy=Gy
52 13 51 mpd φyYFHy=Gy
53 52 mpteq2dva φyYFHy=yYGy
54 1 2 3 4 5 6 7 8 9 10 cvmlift3lem3 φH:YB
55 54 ffvelcdmda φyYHyB
56 54 feqmptd φH=yYHy
57 cvmcn FCCovMapJFCCnJ
58 eqid J=J
59 1 58 cnf FCCnJF:BJ
60 3 57 59 3syl φF:BJ
61 60 feqmptd φF=wBFw
62 fveq2 w=HyFw=FHy
63 55 56 61 62 fmptco φFH=yYFHy
64 2 58 cnf GKCnJG:YJ
65 7 64 syl φG:YJ
66 65 feqmptd φG=yYGy
67 53 63 66 3eqtr4d φFH=G