Step |
Hyp |
Ref |
Expression |
1 |
|
cycl3grtri.g |
|
2 |
|
cycl3grtri.c |
|
3 |
|
cycl3grtri.n |
|
4 |
|
cyclprop |
|
5 |
|
tpeq1 |
|
6 |
5
|
eqeq2d |
|
7 |
|
preq1 |
|
8 |
7
|
eleq1d |
|
9 |
|
preq1 |
|
10 |
9
|
eleq1d |
|
11 |
8 10
|
3anbi12d |
|
12 |
6 11
|
3anbi13d |
|
13 |
|
tpeq2 |
|
14 |
13
|
eqeq2d |
|
15 |
|
preq2 |
|
16 |
15
|
eleq1d |
|
17 |
|
preq1 |
|
18 |
17
|
eleq1d |
|
19 |
16 18
|
3anbi13d |
|
20 |
14 19
|
3anbi13d |
|
21 |
|
tpeq3 |
|
22 |
21
|
eqeq2d |
|
23 |
|
preq2 |
|
24 |
23
|
eleq1d |
|
25 |
|
preq2 |
|
26 |
25
|
eleq1d |
|
27 |
24 26
|
3anbi23d |
|
28 |
22 27
|
3anbi13d |
|
29 |
|
pthiswlk |
|
30 |
|
eqid |
|
31 |
30
|
wlkp |
|
32 |
|
simpl |
|
33 |
|
3nn0 |
|
34 |
|
0elfz |
|
35 |
33 34
|
ax-mp |
|
36 |
|
oveq2 |
|
37 |
35 36
|
eleqtrrid |
|
38 |
37
|
ad2antll |
|
39 |
32 38
|
ffvelcdmd |
|
40 |
39
|
ex |
|
41 |
29 31 40
|
3syl |
|
42 |
41
|
adantl |
|
43 |
42
|
imp |
|
44 |
|
1nn0 |
|
45 |
|
1le3 |
|
46 |
|
elfz2nn0 |
|
47 |
44 33 45 46
|
mpbir3an |
|
48 |
47 36
|
eleqtrrid |
|
49 |
48
|
ad2antll |
|
50 |
32 49
|
ffvelcdmd |
|
51 |
50
|
ex |
|
52 |
29 31 51
|
3syl |
|
53 |
52
|
adantl |
|
54 |
53
|
imp |
|
55 |
|
2nn0 |
|
56 |
|
2re |
|
57 |
|
3re |
|
58 |
|
2lt3 |
|
59 |
56 57 58
|
ltleii |
|
60 |
|
elfz2nn0 |
|
61 |
55 33 59 60
|
mpbir3an |
|
62 |
61 36
|
eleqtrrid |
|
63 |
62
|
ad2antll |
|
64 |
32 63
|
ffvelcdmd |
|
65 |
64
|
ex |
|
66 |
29 31 65
|
3syl |
|
67 |
66
|
adantl |
|
68 |
67
|
imp |
|
69 |
|
fdm |
|
70 |
|
elnn0uz |
|
71 |
33 70
|
mpbi |
|
72 |
|
fzisfzounsn |
|
73 |
71 72
|
ax-mp |
|
74 |
|
fzo0to3tp |
|
75 |
74
|
uneq1i |
|
76 |
73 75
|
eqtri |
|
77 |
36 76
|
eqtrdi |
|
78 |
77
|
adantl |
|
79 |
69 78
|
sylan9eq |
|
80 |
79
|
imaeq2d |
|
81 |
|
imadmrn |
|
82 |
|
imaundi |
|
83 |
80 81 82
|
3eqtr3g |
|
84 |
|
ffn |
|
85 |
84
|
adantr |
|
86 |
85 38 49 63
|
fnimatpd |
|
87 |
|
nn0fz0 |
|
88 |
33 87
|
mpbi |
|
89 |
88 36
|
eleqtrrid |
|
90 |
89
|
adantl |
|
91 |
|
fnsnfv |
|
92 |
84 90 91
|
syl2an |
|
93 |
92
|
eqcomd |
|
94 |
86 93
|
uneq12d |
|
95 |
|
fveq2 |
|
96 |
95
|
eqeq2d |
|
97 |
|
sneq |
|
98 |
97
|
eqcoms |
|
99 |
98
|
uneq2d |
|
100 |
|
snsstp1 |
|
101 |
100
|
a1i |
|
102 |
|
ssequn2 |
|
103 |
101 102
|
sylib |
|
104 |
99 103
|
eqtrd |
|
105 |
96 104
|
biimtrdi |
|
106 |
105
|
impcom |
|
107 |
106
|
adantl |
|
108 |
83 94 107
|
3eqtrd |
|
109 |
108
|
ex |
|
110 |
29 31 109
|
3syl |
|
111 |
110
|
adantl |
|
112 |
111
|
imp |
|
113 |
|
breq2 |
|
114 |
45 113
|
mpbiri |
|
115 |
114
|
ad2antll |
|
116 |
2
|
ad2antrr |
|
117 |
|
cyclnumvtx |
|
118 |
115 116 117
|
syl2anc |
|
119 |
3
|
ad2antrr |
|
120 |
118 119
|
eqtrd |
|
121 |
|
cycl3grtrilem |
|
122 |
1 121
|
sylanl1 |
|
123 |
112 120 122
|
3jca |
|
124 |
12 20 28 43 54 68 123
|
3rspcedvdw |
|
125 |
|
eqid |
|
126 |
30 125
|
isgrtri |
Could not format ( ran P e. ( GrTriangles ` G ) <-> E. x e. ( Vtx ` G ) E. y e. ( Vtx ` G ) E. z e. ( Vtx ` G ) ( ran P = { x , y , z } /\ ( # ` ran P ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) : No typesetting found for |- ( ran P e. ( GrTriangles ` G ) <-> E. x e. ( Vtx ` G ) E. y e. ( Vtx ` G ) E. z e. ( Vtx ` G ) ( ran P = { x , y , z } /\ ( # ` ran P ) = 3 /\ ( { x , y } e. ( Edg ` G ) /\ { x , z } e. ( Edg ` G ) /\ { y , z } e. ( Edg ` G ) ) ) ) with typecode |- |
127 |
124 126
|
sylibr |
Could not format ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ( ( ph /\ F ( Paths ` G ) P ) /\ ( ( P ` 0 ) = ( P ` ( # ` F ) ) /\ ( # ` F ) = 3 ) ) -> ran P e. ( GrTriangles ` G ) ) with typecode |- |
128 |
127
|
exp32 |
Could not format ( ( ph /\ F ( Paths ` G ) P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ran P e. ( GrTriangles ` G ) ) ) ) : No typesetting found for |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ran P e. ( GrTriangles ` G ) ) ) ) with typecode |- |
129 |
128
|
com23 |
Could not format ( ( ph /\ F ( Paths ` G ) P ) -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) : No typesetting found for |- ( ( ph /\ F ( Paths ` G ) P ) -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) with typecode |- |
130 |
129
|
expcom |
Could not format ( F ( Paths ` G ) P -> ( ph -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) ) : No typesetting found for |- ( F ( Paths ` G ) P -> ( ph -> ( ( # ` F ) = 3 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ran P e. ( GrTriangles ` G ) ) ) ) ) with typecode |- |
131 |
130
|
com24 |
Could not format ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) ) : No typesetting found for |- ( F ( Paths ` G ) P -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) ) with typecode |- |
132 |
131
|
imp |
Could not format ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) : No typesetting found for |- ( ( F ( Paths ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) with typecode |- |
133 |
4 132
|
syl |
Could not format ( F ( Cycles ` G ) P -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) : No typesetting found for |- ( F ( Cycles ` G ) P -> ( ( # ` F ) = 3 -> ( ph -> ran P e. ( GrTriangles ` G ) ) ) ) with typecode |- |
134 |
133
|
com13 |
Could not format ( ph -> ( ( # ` F ) = 3 -> ( F ( Cycles ` G ) P -> ran P e. ( GrTriangles ` G ) ) ) ) : No typesetting found for |- ( ph -> ( ( # ` F ) = 3 -> ( F ( Cycles ` G ) P -> ran P e. ( GrTriangles ` G ) ) ) ) with typecode |- |
135 |
3 2 134
|
mp2d |
Could not format ( ph -> ran P e. ( GrTriangles ` G ) ) : No typesetting found for |- ( ph -> ran P e. ( GrTriangles ` G ) ) with typecode |- |