Metamath Proof Explorer


Theorem dchrn0

Description: A Dirichlet character is nonzero on the units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrn0.b B=BaseZ
dchrn0.u U=UnitZ
dchrn0.x φXD
dchrn0.a φAB
Assertion dchrn0 φXA0AU

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrn0.b B=BaseZ
5 dchrn0.u U=UnitZ
6 dchrn0.x φXD
7 dchrn0.a φAB
8 fveq2 x=AXx=XA
9 8 neeq1d x=AXx0XA0
10 eleq1 x=AxUAU
11 9 10 imbi12d x=AXx0xUXA0AU
12 1 3 dchrrcl XDN
13 6 12 syl φN
14 1 2 4 5 13 3 dchrelbas2 φXDXmulGrpZMndHommulGrpfldxBXx0xU
15 6 14 mpbid φXmulGrpZMndHommulGrpfldxBXx0xU
16 15 simprd φxBXx0xU
17 11 16 7 rspcdva φXA0AU
18 17 imp φXA0AU
19 ax-1ne0 10
20 19 a1i φAU10
21 13 nnnn0d φN0
22 2 zncrng N0ZCRing
23 crngring ZCRingZRing
24 21 22 23 3syl φZRing
25 eqid invrZ=invrZ
26 eqid Z=Z
27 eqid 1Z=1Z
28 5 25 26 27 unitrinv ZRingAUAZinvrZA=1Z
29 24 28 sylan φAUAZinvrZA=1Z
30 29 fveq2d φAUXAZinvrZA=X1Z
31 15 simpld φXmulGrpZMndHommulGrpfld
32 31 adantr φAUXmulGrpZMndHommulGrpfld
33 7 adantr φAUAB
34 5 25 4 ringinvcl ZRingAUinvrZAB
35 24 34 sylan φAUinvrZAB
36 eqid mulGrpZ=mulGrpZ
37 36 4 mgpbas B=BasemulGrpZ
38 36 26 mgpplusg Z=+mulGrpZ
39 eqid mulGrpfld=mulGrpfld
40 cnfldmul ×=fld
41 39 40 mgpplusg ×=+mulGrpfld
42 37 38 41 mhmlin XmulGrpZMndHommulGrpfldABinvrZABXAZinvrZA=XAXinvrZA
43 32 33 35 42 syl3anc φAUXAZinvrZA=XAXinvrZA
44 36 27 ringidval 1Z=0mulGrpZ
45 cnfld1 1=1fld
46 39 45 ringidval 1=0mulGrpfld
47 44 46 mhm0 XmulGrpZMndHommulGrpfldX1Z=1
48 32 47 syl φAUX1Z=1
49 30 43 48 3eqtr3d φAUXAXinvrZA=1
50 cnfldbas =Basefld
51 39 50 mgpbas =BasemulGrpfld
52 37 51 mhmf XmulGrpZMndHommulGrpfldX:B
53 32 52 syl φAUX:B
54 53 35 ffvelcdmd φAUXinvrZA
55 54 mul02d φAU0XinvrZA=0
56 20 49 55 3netr4d φAUXAXinvrZA0XinvrZA
57 oveq1 XA=0XAXinvrZA=0XinvrZA
58 57 necon3i XAXinvrZA0XinvrZAXA0
59 56 58 syl φAUXA0
60 18 59 impbida φXA0AU