Description: A Dirichlet character is nonzero on the units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dchrmhm.g | |
|
dchrmhm.z | |
||
dchrmhm.b | |
||
dchrn0.b | |
||
dchrn0.u | |
||
dchrn0.x | |
||
dchrn0.a | |
||
Assertion | dchrn0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dchrmhm.g | |
|
2 | dchrmhm.z | |
|
3 | dchrmhm.b | |
|
4 | dchrn0.b | |
|
5 | dchrn0.u | |
|
6 | dchrn0.x | |
|
7 | dchrn0.a | |
|
8 | fveq2 | |
|
9 | 8 | neeq1d | |
10 | eleq1 | |
|
11 | 9 10 | imbi12d | |
12 | 1 3 | dchrrcl | |
13 | 6 12 | syl | |
14 | 1 2 4 5 13 3 | dchrelbas2 | |
15 | 6 14 | mpbid | |
16 | 15 | simprd | |
17 | 11 16 7 | rspcdva | |
18 | 17 | imp | |
19 | ax-1ne0 | |
|
20 | 19 | a1i | |
21 | 13 | nnnn0d | |
22 | 2 | zncrng | |
23 | crngring | |
|
24 | 21 22 23 | 3syl | |
25 | eqid | |
|
26 | eqid | |
|
27 | eqid | |
|
28 | 5 25 26 27 | unitrinv | |
29 | 24 28 | sylan | |
30 | 29 | fveq2d | |
31 | 15 | simpld | |
32 | 31 | adantr | |
33 | 7 | adantr | |
34 | 5 25 4 | ringinvcl | |
35 | 24 34 | sylan | |
36 | eqid | |
|
37 | 36 4 | mgpbas | |
38 | 36 26 | mgpplusg | |
39 | eqid | |
|
40 | cnfldmul | |
|
41 | 39 40 | mgpplusg | |
42 | 37 38 41 | mhmlin | |
43 | 32 33 35 42 | syl3anc | |
44 | 36 27 | ringidval | |
45 | cnfld1 | |
|
46 | 39 45 | ringidval | |
47 | 44 46 | mhm0 | |
48 | 32 47 | syl | |
49 | 30 43 48 | 3eqtr3d | |
50 | cnfldbas | |
|
51 | 39 50 | mgpbas | |
52 | 37 51 | mhmf | |
53 | 32 52 | syl | |
54 | 53 35 | ffvelcdmd | |
55 | 54 | mul02d | |
56 | 20 49 55 | 3netr4d | |
57 | oveq1 | |
|
58 | 57 | necon3i | |
59 | 56 58 | syl | |
60 | 18 59 | impbida | |