Metamath Proof Explorer


Theorem dfac2b

Description: Axiom of Choice (first form) of Enderton p. 49 implies our Axiom of Choice (in the form of ac3 ). The proof does not make use of AC. Note that the Axiom of Regularity is used by the proof. Specifically, elneq and preleq that are referenced in the proof each make use of Regularity for their derivations. (The reverse implication can be derived without using Regularity; see dfac2a .) (Contributed by NM, 5-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015) (Revised by AV, 16-Jun-2022)

Ref Expression
Assertion dfac2b CHOICExyzxz∃!wzvyzvwv

Proof

Step Hyp Ref Expression
1 dfac3 CHOICExfzxzfzz
2 nfra1 zzxzfzz
3 rsp zxzfzzzxzfzz
4 equid z=z
5 neeq1 u=zuz
6 eqeq1 u=zu=zz=z
7 5 6 anbi12d u=zuu=zzz=z
8 7 rspcev zxzz=zuxuu=z
9 4 8 mpanr2 zxzuxuu=z
10 fveq2 u=zfu=fz
11 10 preq1d u=zfuu=fzu
12 preq2 u=zfzu=fzz
13 11 12 eqtr2d u=zfzz=fuu
14 13 anim2i uu=zufzz=fuu
15 14 reximi uxuu=zuxufzz=fuu
16 9 15 syl zxzuxufzz=fuu
17 prex fzzV
18 eqeq1 g=fzzg=fuufzz=fuu
19 18 anbi2d g=fzzug=fuuufzz=fuu
20 19 rexbidv g=fzzuxug=fuuuxufzz=fuu
21 17 20 elab fzzg|uxug=fuuuxufzz=fuu
22 16 21 sylibr zxzfzzg|uxug=fuu
23 vex zV
24 23 prid2 zfzz
25 fvex fzV
26 25 prid1 fzfzz
27 24 26 pm3.2i zfzzfzfzz
28 eleq2 v=fzzzvzfzz
29 eleq2 v=fzzfzvfzfzz
30 28 29 anbi12d v=fzzzvfzvzfzzfzfzz
31 30 rspcev fzzg|uxug=fuuzfzzfzfzzvg|uxug=fuuzvfzv
32 22 27 31 sylancl zxzvg|uxug=fuuzvfzv
33 eleq1 w=fzwzfzz
34 eleq1 w=fzwvfzv
35 34 anbi2d w=fzzvwvzvfzv
36 35 rexbidv w=fzvg|uxug=fuuzvwvvg|uxug=fuuzvfzv
37 33 36 anbi12d w=fzwzvg|uxug=fuuzvwvfzzvg|uxug=fuuzvfzv
38 25 37 spcev fzzvg|uxug=fuuzvfzvwwzvg|uxug=fuuzvwv
39 32 38 sylan2 fzzzxzwwzvg|uxug=fuuzvwv
40 39 ex fzzzxzwwzvg|uxug=fuuzvwv
41 3 40 syl8 zxzfzzzxzzxzwwzvg|uxug=fuuzvwv
42 41 impd zxzfzzzxzzxzwwzvg|uxug=fuuzvwv
43 42 pm2.43d zxzfzzzxzwwzvg|uxug=fuuzvwv
44 df-rex vg|uxug=fuuzvwvvvg|uxug=fuuzvwv
45 vex vV
46 eqeq1 g=vg=fuuv=fuu
47 46 anbi2d g=vug=fuuuv=fuu
48 47 rexbidv g=vuxug=fuuuxuv=fuu
49 45 48 elab vg|uxug=fuuuxuv=fuu
50 neeq1 z=uzu
51 fveq2 z=ufz=fu
52 51 eleq1d z=ufzzfuz
53 eleq2 z=ufuzfuu
54 52 53 bitrd z=ufzzfuu
55 50 54 imbi12d z=uzfzzufuu
56 55 rspccv zxzfzzuxufuu
57 elneq wzwz
58 57 neneqd wz¬w=z
59 vex wV
60 neqne ¬w=zwz
61 prel12g wVzVwzwz=fuuwfuuzfuu
62 59 23 60 61 mp3an12i ¬w=zwz=fuuwfuuzfuu
63 eleq2 v=fuuwvwfuu
64 eleq2 v=fuuzvzfuu
65 63 64 anbi12d v=fuuwvzvwfuuzfuu
66 ancom wvzvzvwv
67 65 66 bitr3di v=fuuwfuuzfuuzvwv
68 62 67 sylan9bbr v=fuu¬w=zwz=fuuzvwv
69 58 68 sylan2 v=fuuwzwz=fuuzvwv
70 69 adantrr v=fuuwzfuuwz=fuuzvwv
71 70 pm5.32da v=fuuwzfuuwz=fuuwzfuuzvwv
72 23 preleq wzfuuwz=fuuw=fuz=u
73 71 72 syl6bir v=fuuwzfuuzvwvw=fuz=u
74 51 eqeq2d z=uw=fzw=fu
75 74 biimparc w=fuz=uw=fz
76 73 75 syl6 v=fuuwzfuuzvwvw=fz
77 76 exp4c v=fuuwzfuuzvwvw=fz
78 77 com13 fuuwzv=fuuzvwvw=fz
79 56 78 syl8 zxzfzzuxuwzv=fuuzvwvw=fz
80 79 com4r wzzxzfzzuxuv=fuuzvwvw=fz
81 80 imp wzzxzfzzuxuv=fuuzvwvw=fz
82 81 imp4a wzzxzfzzuxuv=fuuzvwvw=fz
83 82 com3l uxuv=fuuwzzxzfzzzvwvw=fz
84 83 rexlimiv uxuv=fuuwzzxzfzzzvwvw=fz
85 49 84 sylbi vg|uxug=fuuwzzxzfzzzvwvw=fz
86 85 expd vg|uxug=fuuwzzxzfzzzvwvw=fz
87 86 com13 zxzfzzwzvg|uxug=fuuzvwvw=fz
88 87 imp4b zxzfzzwzvg|uxug=fuuzvwvw=fz
89 88 exlimdv zxzfzzwzvvg|uxug=fuuzvwvw=fz
90 44 89 biimtrid zxzfzzwzvg|uxug=fuuzvwvw=fz
91 90 expimpd zxzfzzwzvg|uxug=fuuzvwvw=fz
92 91 alrimiv zxzfzzwwzvg|uxug=fuuzvwvw=fz
93 mo2icl wwzvg|uxug=fuuzvwvw=fz*wwzvg|uxug=fuuzvwv
94 92 93 syl zxzfzz*wwzvg|uxug=fuuzvwv
95 43 94 jctird zxzfzzzxzwwzvg|uxug=fuuzvwv*wwzvg|uxug=fuuzvwv
96 df-reu ∃!wzvg|uxug=fuuzvwv∃!wwzvg|uxug=fuuzvwv
97 df-eu ∃!wwzvg|uxug=fuuzvwvwwzvg|uxug=fuuzvwv*wwzvg|uxug=fuuzvwv
98 96 97 bitri ∃!wzvg|uxug=fuuzvwvwwzvg|uxug=fuuzvwv*wwzvg|uxug=fuuzvwv
99 95 98 syl6ibr zxzfzzzxz∃!wzvg|uxug=fuuzvwv
100 99 expd zxzfzzzxz∃!wzvg|uxug=fuuzvwv
101 2 100 ralrimi zxzfzzzxz∃!wzvg|uxug=fuuzvwv
102 vex fV
103 102 rnex ranfV
104 p0ex V
105 103 104 unex ranfV
106 vex xV
107 105 106 unex ranfxV
108 107 pwex 𝒫ranfxV
109 ssun1 ranfranfx
110 fvrn0 furanf
111 109 110 sselii furanfx
112 elun2 uxuranfx
113 prssi furanfxuranfxfuuranfx
114 111 112 113 sylancr uxfuuranfx
115 prex fuuV
116 115 elpw fuu𝒫ranfxfuuranfx
117 114 116 sylibr uxfuu𝒫ranfx
118 eleq1 g=fuug𝒫ranfxfuu𝒫ranfx
119 117 118 syl5ibrcom uxg=fuug𝒫ranfx
120 119 adantld uxug=fuug𝒫ranfx
121 120 rexlimiv uxug=fuug𝒫ranfx
122 121 abssi g|uxug=fuu𝒫ranfx
123 108 122 ssexi g|uxug=fuuV
124 rexeq y=g|uxug=fuuvyzvwvvg|uxug=fuuzvwv
125 124 reubidv y=g|uxug=fuu∃!wzvyzvwv∃!wzvg|uxug=fuuzvwv
126 125 imbi2d y=g|uxug=fuuz∃!wzvyzvwvz∃!wzvg|uxug=fuuzvwv
127 126 ralbidv y=g|uxug=fuuzxz∃!wzvyzvwvzxz∃!wzvg|uxug=fuuzvwv
128 123 127 spcev zxz∃!wzvg|uxug=fuuzvwvyzxz∃!wzvyzvwv
129 101 128 syl zxzfzzyzxz∃!wzvyzvwv
130 129 exlimiv fzxzfzzyzxz∃!wzvyzvwv
131 130 alimi xfzxzfzzxyzxz∃!wzvyzvwv
132 1 131 sylbi CHOICExyzxz∃!wzvyzvwv