Metamath Proof Explorer


Theorem dfconn2

Description: An alternate definition of connectedness. (Contributed by Jeff Hankins, 9-Jul-2009) (Proof shortened by Mario Carneiro, 10-Mar-2015)

Ref Expression
Assertion dfconn2 JTopOnXJConnxJyJxyxy=xyX

Proof

Step Hyp Ref Expression
1 eqid J=J
2 simpll JConnxJyJxyxy=JConn
3 simplrl JConnxJyJxyxy=xJ
4 simpr1 JConnxJyJxyxy=x
5 simplrr JConnxJyJxyxy=yJ
6 simpr2 JConnxJyJxyxy=y
7 simpr3 JConnxJyJxyxy=xy=
8 1 2 3 4 5 6 7 conndisj JConnxJyJxyxy=xyJ
9 8 ex JConnxJyJxyxy=xyJ
10 9 ralrimivva JConnxJyJxyxy=xyJ
11 topontop JTopOnXJTop
12 1 cldopn xClsdJJxJ
13 12 adantl JTopxClsdJJxJ
14 df-3an xyxy=xyxy=
15 ineq2 y=Jxxy=xJx
16 disjdif xJx=
17 15 16 eqtrdi y=Jxxy=
18 17 biantrud y=Jxxyxyxy=
19 neeq1 y=JxyJx
20 19 anbi2d y=JxxyxJx
21 18 20 bitr3d y=Jxxyxy=xJx
22 14 21 bitrid y=Jxxyxy=xJx
23 uneq2 y=Jxxy=xJx
24 undif2 xJx=xJ
25 23 24 eqtrdi y=Jxxy=xJ
26 25 neeq1d y=JxxyJxJJ
27 22 26 imbi12d y=Jxxyxy=xyJxJxxJJ
28 27 rspcv JxJyJxyxy=xyJxJxxJJ
29 13 28 syl JTopxClsdJyJxyxy=xyJxJxxJJ
30 1 cldss xClsdJxJ
31 30 adantl JTopxClsdJxJ
32 ssequn1 xJxJ=J
33 31 32 sylib JTopxClsdJxJ=J
34 ssdif0 JxJx=
35 idd JTopxClsdJJxJx
36 35 31 jctild JTopxClsdJJxxJJx
37 eqss x=JxJJx
38 36 37 syl6ibr JTopxClsdJJxx=J
39 34 38 biimtrrid JTopxClsdJJx=x=J
40 33 39 embantd JTopxClsdJxJ=JJx=x=J
41 40 orim2d JTopxClsdJx=xJ=JJx=x=x=J
42 impexp xJxxJJxJxxJJ
43 df-ne x¬x=
44 id JxxJJJxxJJ
45 44 necon4d JxxJJxJ=JJx=
46 id xJ=JJx=xJ=JJx=
47 46 necon3d xJ=JJx=JxxJJ
48 45 47 impbii JxxJJxJ=JJx=
49 43 48 imbi12i xJxxJJ¬x=xJ=JJx=
50 pm4.64 ¬x=xJ=JJx=x=xJ=JJx=
51 49 50 bitri xJxxJJx=xJ=JJx=
52 42 51 bitri xJxxJJx=xJ=JJx=
53 vex xV
54 53 elpr xJx=x=J
55 41 52 54 3imtr4g JTopxClsdJxJxxJJxJ
56 29 55 syld JTopxClsdJyJxyxy=xyJxJ
57 56 ex JTopxClsdJyJxyxy=xyJxJ
58 57 com23 JTopyJxyxy=xyJxClsdJxJ
59 58 imim2d JTopxJyJxyxy=xyJxJxClsdJxJ
60 elin xJClsdJxJxClsdJ
61 60 imbi1i xJClsdJxJxJxClsdJxJ
62 impexp xJxClsdJxJxJxClsdJxJ
63 61 62 bitri xJClsdJxJxJxClsdJxJ
64 59 63 syl6ibr JTopxJyJxyxy=xyJxJClsdJxJ
65 64 alimdv JTopxxJyJxyxy=xyJxxJClsdJxJ
66 df-ral xJyJxyxy=xyJxxJyJxyxy=xyJ
67 dfss2 JClsdJJxxJClsdJxJ
68 65 66 67 3imtr4g JTopxJyJxyxy=xyJJClsdJJ
69 1 isconn2 JConnJTopJClsdJJ
70 69 baib JTopJConnJClsdJJ
71 68 70 sylibrd JTopxJyJxyxy=xyJJConn
72 11 71 syl JTopOnXxJyJxyxy=xyJJConn
73 10 72 impbid2 JTopOnXJConnxJyJxyxy=xyJ
74 toponuni JTopOnXX=J
75 74 neeq2d JTopOnXxyXxyJ
76 75 imbi2d JTopOnXxyxy=xyXxyxy=xyJ
77 76 2ralbidv JTopOnXxJyJxyxy=xyXxJyJxyxy=xyJ
78 73 77 bitr4d JTopOnXJConnxJyJxyxy=xyX