Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | diaglb.g | |
|
diaglb.h | |
||
diaglb.i | |
||
Assertion | diaglbN | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | diaglb.g | |
|
2 | diaglb.h | |
|
3 | diaglb.i | |
|
4 | simpl | |
|
5 | hlclat | |
|
6 | 5 | ad2antrr | |
7 | eqid | |
|
8 | eqid | |
|
9 | 7 8 2 3 | diadm | |
10 | 9 | sseq2d | |
11 | 10 | biimpa | |
12 | 11 | adantrr | |
13 | ssrab2 | |
|
14 | 12 13 | sstrdi | |
15 | 7 1 | clatglbcl | |
16 | 6 14 15 | syl2anc | |
17 | simprr | |
|
18 | n0 | |
|
19 | 17 18 | sylib | |
20 | hllat | |
|
21 | 20 | ad3antrrr | |
22 | 16 | adantr | |
23 | ssel2 | |
|
24 | 23 | adantlr | |
25 | 24 | adantll | |
26 | 7 8 2 3 | diaeldm | |
27 | 26 | ad2antrr | |
28 | 25 27 | mpbid | |
29 | 28 | simpld | |
30 | 7 2 | lhpbase | |
31 | 30 | ad3antlr | |
32 | 5 | ad3antrrr | |
33 | 14 | adantr | |
34 | simpr | |
|
35 | 7 8 1 | clatglble | |
36 | 32 33 34 35 | syl3anc | |
37 | 28 | simprd | |
38 | 7 8 21 22 29 31 36 37 | lattrd | |
39 | 19 38 | exlimddv | |
40 | eqid | |
|
41 | eqid | |
|
42 | 7 8 2 40 41 3 | diaelval | |
43 | 4 16 39 42 | syl12anc | |
44 | r19.28zv | |
|
45 | 44 | ad2antll | |
46 | simpll | |
|
47 | 7 8 2 40 41 3 | diaelval | |
48 | 46 28 47 | syl2anc | |
49 | 48 | ralbidva | |
50 | 5 | ad3antrrr | |
51 | 7 2 40 41 | trlcl | |
52 | 51 | adantlr | |
53 | 14 | adantr | |
54 | 7 8 1 | clatleglb | |
55 | 50 52 53 54 | syl3anc | |
56 | 55 | pm5.32da | |
57 | 45 49 56 | 3bitr4rd | |
58 | vex | |
|
59 | eliin | |
|
60 | 58 59 | ax-mp | |
61 | 57 60 | bitr4di | |
62 | 43 61 | bitrd | |
63 | 62 | eqrdv | |