Metamath Proof Explorer


Theorem diaglbN

Description: Partial isomorphism A of a lattice glb. (Contributed by NM, 3-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses diaglb.g G=glbK
diaglb.h H=LHypK
diaglb.i I=DIsoAKW
Assertion diaglbN KHLWHSdomISIGS=xSIx

Proof

Step Hyp Ref Expression
1 diaglb.g G=glbK
2 diaglb.h H=LHypK
3 diaglb.i I=DIsoAKW
4 simpl KHLWHSdomISKHLWH
5 hlclat KHLKCLat
6 5 ad2antrr KHLWHSdomISKCLat
7 eqid BaseK=BaseK
8 eqid K=K
9 7 8 2 3 diadm KHLWHdomI=yBaseK|yKW
10 9 sseq2d KHLWHSdomISyBaseK|yKW
11 10 biimpa KHLWHSdomISyBaseK|yKW
12 11 adantrr KHLWHSdomISSyBaseK|yKW
13 ssrab2 yBaseK|yKWBaseK
14 12 13 sstrdi KHLWHSdomISSBaseK
15 7 1 clatglbcl KCLatSBaseKGSBaseK
16 6 14 15 syl2anc KHLWHSdomISGSBaseK
17 simprr KHLWHSdomISS
18 n0 SxxS
19 17 18 sylib KHLWHSdomISxxS
20 hllat KHLKLat
21 20 ad3antrrr KHLWHSdomISxSKLat
22 16 adantr KHLWHSdomISxSGSBaseK
23 ssel2 SdomIxSxdomI
24 23 adantlr SdomISxSxdomI
25 24 adantll KHLWHSdomISxSxdomI
26 7 8 2 3 diaeldm KHLWHxdomIxBaseKxKW
27 26 ad2antrr KHLWHSdomISxSxdomIxBaseKxKW
28 25 27 mpbid KHLWHSdomISxSxBaseKxKW
29 28 simpld KHLWHSdomISxSxBaseK
30 7 2 lhpbase WHWBaseK
31 30 ad3antlr KHLWHSdomISxSWBaseK
32 5 ad3antrrr KHLWHSdomISxSKCLat
33 14 adantr KHLWHSdomISxSSBaseK
34 simpr KHLWHSdomISxSxS
35 7 8 1 clatglble KCLatSBaseKxSGSKx
36 32 33 34 35 syl3anc KHLWHSdomISxSGSKx
37 28 simprd KHLWHSdomISxSxKW
38 7 8 21 22 29 31 36 37 lattrd KHLWHSdomISxSGSKW
39 19 38 exlimddv KHLWHSdomISGSKW
40 eqid LTrnKW=LTrnKW
41 eqid trLKW=trLKW
42 7 8 2 40 41 3 diaelval KHLWHGSBaseKGSKWfIGSfLTrnKWtrLKWfKGS
43 4 16 39 42 syl12anc KHLWHSdomISfIGSfLTrnKWtrLKWfKGS
44 r19.28zv SxSfLTrnKWtrLKWfKxfLTrnKWxStrLKWfKx
45 44 ad2antll KHLWHSdomISxSfLTrnKWtrLKWfKxfLTrnKWxStrLKWfKx
46 simpll KHLWHSdomISxSKHLWH
47 7 8 2 40 41 3 diaelval KHLWHxBaseKxKWfIxfLTrnKWtrLKWfKx
48 46 28 47 syl2anc KHLWHSdomISxSfIxfLTrnKWtrLKWfKx
49 48 ralbidva KHLWHSdomISxSfIxxSfLTrnKWtrLKWfKx
50 5 ad3antrrr KHLWHSdomISfLTrnKWKCLat
51 7 2 40 41 trlcl KHLWHfLTrnKWtrLKWfBaseK
52 51 adantlr KHLWHSdomISfLTrnKWtrLKWfBaseK
53 14 adantr KHLWHSdomISfLTrnKWSBaseK
54 7 8 1 clatleglb KCLattrLKWfBaseKSBaseKtrLKWfKGSxStrLKWfKx
55 50 52 53 54 syl3anc KHLWHSdomISfLTrnKWtrLKWfKGSxStrLKWfKx
56 55 pm5.32da KHLWHSdomISfLTrnKWtrLKWfKGSfLTrnKWxStrLKWfKx
57 45 49 56 3bitr4rd KHLWHSdomISfLTrnKWtrLKWfKGSxSfIx
58 vex fV
59 eliin fVfxSIxxSfIx
60 58 59 ax-mp fxSIxxSfIx
61 57 60 bitr4di KHLWHSdomISfLTrnKWtrLKWfKGSfxSIx
62 43 61 bitrd KHLWHSdomISfIGSfxSIx
63 62 eqrdv KHLWHSdomISIGS=xSIx