Metamath Proof Explorer


Theorem digit1

Description: Two ways to express the K th digit in the decimal expansion of a number A (when base B = 1 0 ). K = 1 corresponds to the first digit after the decimal point. (Contributed by NM, 3-Jan-2009)

Ref Expression
Assertion digit1 ABKBKAmodB=BKAmodBKBBK1AmodBK

Proof

Step Hyp Ref Expression
1 digit2 ABKBKAmodB=BKABBK1A
2 1 3coml BKABKAmodB=BKABBK1A
3 2 3expa BKABKAmodB=BKABBK1A
4 3 oveq1d BKABKAmodBmodBK=BKABBK1AmodBK
5 nnre BB
6 nnnn0 KK0
7 reexpcl BK0BK
8 5 6 7 syl2an BKBK
9 remulcl BKABKA
10 8 9 sylan BKABKA
11 reflcl BKABKA
12 10 11 syl BKABKA
13 nnrp BB+
14 13 ad2antrr BKAB+
15 12 14 modcld BKABKAmodB
16 nnexpcl BK0BK
17 6 16 sylan2 BKBK
18 17 nnrpd BKBK+
19 18 adantr BKABK+
20 modge0 BKAB+0BKAmodB
21 12 14 20 syl2anc BKA0BKAmodB
22 5 ad2antrr BKAB
23 8 adantr BKABK
24 modlt BKAB+BKAmodB<B
25 12 14 24 syl2anc BKABKAmodB<B
26 nncn BB
27 exp1 BB1=B
28 26 27 syl BB1=B
29 28 adantr BKB1=B
30 5 adantr BKB
31 nnge1 B1B
32 31 adantr BK1B
33 simpr BKK
34 nnuz =1
35 33 34 eleqtrdi BKK1
36 leexp2a B1BK1B1BK
37 30 32 35 36 syl3anc BKB1BK
38 29 37 eqbrtrrd BKBBK
39 38 adantr BKABBK
40 15 22 23 25 39 ltletrd BKABKAmodB<BK
41 modid BKAmodBBK+0BKAmodBBKAmodB<BKBKAmodBmodBK=BKAmodB
42 15 19 21 40 41 syl22anc BKABKAmodBmodBK=BKAmodB
43 simpll BKAB
44 nnm1nn0 KK10
45 reexpcl BK10BK1
46 5 44 45 syl2an BKBK1
47 remulcl BK1ABK1A
48 46 47 sylan BKABK1A
49 nnexpcl BK10BK1
50 44 49 sylan2 BKBK1
51 50 adantr BKABK1
52 modmulnn BBK1ABK1BBK1AmodBBK1BBK1AmodBBK1
53 43 48 51 52 syl3anc BKABBK1AmodBBK1BBK1AmodBBK1
54 expm1t BKBK=BK1B
55 expcl BK10BK1
56 44 55 sylan2 BKBK1
57 simpl BKB
58 56 57 mulcomd BKBK1B=BBK1
59 54 58 eqtrd BKBK=BBK1
60 26 59 sylan BKBK=BBK1
61 60 adantr BKABK=BBK1
62 61 oveq2d BKABBK1AmodBK=BBK1AmodBBK1
63 61 oveq1d BKABKA=BBK1A
64 26 ad2antrr BKAB
65 26 44 55 syl2an BKBK1
66 65 adantr BKABK1
67 recn AA
68 67 adantl BKAA
69 64 66 68 mulassd BKABBK1A=BBK1A
70 63 69 eqtrd BKABKA=BBK1A
71 70 fveq2d BKABKA=BBK1A
72 71 61 oveq12d BKABKAmodBK=BBK1AmodBBK1
73 53 62 72 3brtr4d BKABBK1AmodBKBKAmodBK
74 reflcl BK1ABK1A
75 48 74 syl BKABK1A
76 remulcl BBK1ABBK1A
77 22 75 76 syl2anc BKABBK1A
78 modsubdir BKABBK1ABK+BBK1AmodBKBKAmodBKBKABBK1AmodBK=BKAmodBKBBK1AmodBK
79 12 77 19 78 syl3anc BKABBK1AmodBKBKAmodBKBKABBK1AmodBK=BKAmodBKBBK1AmodBK
80 73 79 mpbid BKABKABBK1AmodBK=BKAmodBKBBK1AmodBK
81 4 42 80 3eqtr3d BKABKAmodB=BKAmodBKBBK1AmodBK
82 81 3impa BKABKAmodB=BKAmodBKBBK1AmodBK
83 82 3comr ABKBKAmodB=BKAmodBKBBK1AmodBK