Metamath Proof Explorer


Theorem dignnld

Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion dignnld B 2 N K log B N + 1 K digit B N = 0

Proof

Step Hyp Ref Expression
1 eluz2nn B 2 B
2 1 3ad2ant1 B 2 N K log B N + 1 B
3 nnrp N N +
4 3 anim2i B 2 N B 2 N +
5 relogbzcl B 2 N + log B N
6 4 5 syl B 2 N log B N
7 nnre N N
8 nnge1 N 1 N
9 7 8 jca N N 1 N
10 1re 1
11 elicopnf 1 N 1 +∞ N 1 N
12 10 11 ax-mp N 1 +∞ N 1 N
13 9 12 sylibr N N 1 +∞
14 13 anim2i B 2 N B 2 N 1 +∞
15 rege1logbzge0 B 2 N 1 +∞ 0 log B N
16 14 15 syl B 2 N 0 log B N
17 6 16 jca B 2 N log B N 0 log B N
18 flge0nn0 log B N 0 log B N log B N 0
19 peano2nn0 log B N 0 log B N + 1 0
20 17 18 19 3syl B 2 N log B N + 1 0
21 eluznn0 log B N + 1 0 K log B N + 1 K 0
22 20 21 stoic3 B 2 N K log B N + 1 K 0
23 nnnn0 N N 0
24 nn0rp0 N 0 N 0 +∞
25 23 24 syl N N 0 +∞
26 25 3ad2ant2 B 2 N K log B N + 1 N 0 +∞
27 nn0digval B K 0 N 0 +∞ K digit B N = N B K mod B
28 2 22 26 27 syl3anc B 2 N K log B N + 1 K digit B N = N B K mod B
29 7 3ad2ant2 B 2 N K log B N + 1 N
30 eluzelre B 2 B
31 30 3ad2ant1 B 2 N K log B N + 1 B
32 eluz2n0 B 2 B 0
33 32 3ad2ant1 B 2 N K log B N + 1 B 0
34 eluzelz K log B N + 1 K
35 34 3ad2ant3 B 2 N K log B N + 1 K
36 31 33 35 reexpclzd B 2 N K log B N + 1 B K
37 eluzelcn B 2 B
38 37 3ad2ant1 B 2 N K log B N + 1 B
39 38 33 35 expne0d B 2 N K log B N + 1 B K 0
40 29 36 39 redivcld B 2 N K log B N + 1 N B K
41 nn0ge0 N 0 0 N
42 23 41 syl N 0 N
43 42 3ad2ant2 B 2 N K log B N + 1 0 N
44 1 nngt0d B 2 0 < B
45 44 3ad2ant1 B 2 N K log B N + 1 0 < B
46 expgt0 B K 0 < B 0 < B K
47 31 35 45 46 syl3anc B 2 N K log B N + 1 0 < B K
48 ge0div N B K 0 < B K 0 N 0 N B K
49 29 36 47 48 syl3anc B 2 N K log B N + 1 0 N 0 N B K
50 43 49 mpbid B 2 N K log B N + 1 0 N B K
51 dignn0ldlem B 2 N K log B N + 1 N < B K
52 1 nnrpd B 2 B +
53 rpexpcl B + K B K +
54 52 34 53 syl2an B 2 K log B N + 1 B K +
55 54 3adant2 B 2 N K log B N + 1 B K +
56 divlt1lt N B K + N B K < 1 N < B K
57 29 55 56 syl2anc B 2 N K log B N + 1 N B K < 1 N < B K
58 51 57 mpbird B 2 N K log B N + 1 N B K < 1
59 0re 0
60 1xr 1 *
61 59 60 pm3.2i 0 1 *
62 elico2 0 1 * N B K 0 1 N B K 0 N B K N B K < 1
63 61 62 mp1i B 2 N K log B N + 1 N B K 0 1 N B K 0 N B K N B K < 1
64 40 50 58 63 mpbir3and B 2 N K log B N + 1 N B K 0 1
65 ico01fl0 N B K 0 1 N B K = 0
66 64 65 syl B 2 N K log B N + 1 N B K = 0
67 66 oveq1d B 2 N K log B N + 1 N B K mod B = 0 mod B
68 52 3ad2ant1 B 2 N K log B N + 1 B +
69 0mod B + 0 mod B = 0
70 68 69 syl B 2 N K log B N + 1 0 mod B = 0
71 28 67 70 3eqtrd B 2 N K log B N + 1 K digit B N = 0