Metamath Proof Explorer


Theorem dignnld

Description: The leading digits of a positive integer are 0. (Contributed by AV, 25-May-2020)

Ref Expression
Assertion dignnld B2NKlogBN+1KdigitBN=0

Proof

Step Hyp Ref Expression
1 eluz2nn B2B
2 1 3ad2ant1 B2NKlogBN+1B
3 nnrp NN+
4 3 anim2i B2NB2N+
5 relogbzcl B2N+logBN
6 4 5 syl B2NlogBN
7 nnre NN
8 nnge1 N1N
9 7 8 jca NN1N
10 1re 1
11 elicopnf 1N1+∞N1N
12 10 11 ax-mp N1+∞N1N
13 9 12 sylibr NN1+∞
14 13 anim2i B2NB2N1+∞
15 rege1logbzge0 B2N1+∞0logBN
16 14 15 syl B2N0logBN
17 6 16 jca B2NlogBN0logBN
18 flge0nn0 logBN0logBNlogBN0
19 peano2nn0 logBN0logBN+10
20 17 18 19 3syl B2NlogBN+10
21 eluznn0 logBN+10KlogBN+1K0
22 20 21 stoic3 B2NKlogBN+1K0
23 nnnn0 NN0
24 nn0rp0 N0N0+∞
25 23 24 syl NN0+∞
26 25 3ad2ant2 B2NKlogBN+1N0+∞
27 nn0digval BK0N0+∞KdigitBN=NBKmodB
28 2 22 26 27 syl3anc B2NKlogBN+1KdigitBN=NBKmodB
29 7 3ad2ant2 B2NKlogBN+1N
30 eluzelre B2B
31 30 3ad2ant1 B2NKlogBN+1B
32 eluz2n0 B2B0
33 32 3ad2ant1 B2NKlogBN+1B0
34 eluzelz KlogBN+1K
35 34 3ad2ant3 B2NKlogBN+1K
36 31 33 35 reexpclzd B2NKlogBN+1BK
37 eluzelcn B2B
38 37 3ad2ant1 B2NKlogBN+1B
39 38 33 35 expne0d B2NKlogBN+1BK0
40 29 36 39 redivcld B2NKlogBN+1NBK
41 nn0ge0 N00N
42 23 41 syl N0N
43 42 3ad2ant2 B2NKlogBN+10N
44 1 nngt0d B20<B
45 44 3ad2ant1 B2NKlogBN+10<B
46 expgt0 BK0<B0<BK
47 31 35 45 46 syl3anc B2NKlogBN+10<BK
48 ge0div NBK0<BK0N0NBK
49 29 36 47 48 syl3anc B2NKlogBN+10N0NBK
50 43 49 mpbid B2NKlogBN+10NBK
51 dignn0ldlem B2NKlogBN+1N<BK
52 1 nnrpd B2B+
53 rpexpcl B+KBK+
54 52 34 53 syl2an B2KlogBN+1BK+
55 54 3adant2 B2NKlogBN+1BK+
56 divlt1lt NBK+NBK<1N<BK
57 29 55 56 syl2anc B2NKlogBN+1NBK<1N<BK
58 51 57 mpbird B2NKlogBN+1NBK<1
59 0re 0
60 1xr 1*
61 59 60 pm3.2i 01*
62 elico2 01*NBK01NBK0NBKNBK<1
63 61 62 mp1i B2NKlogBN+1NBK01NBK0NBKNBK<1
64 40 50 58 63 mpbir3and B2NKlogBN+1NBK01
65 ico01fl0 NBK01NBK=0
66 64 65 syl B2NKlogBN+1NBK=0
67 66 oveq1d B2NKlogBN+1NBKmodB=0modB
68 52 3ad2ant1 B2NKlogBN+1B+
69 0mod B+0modB=0
70 68 69 syl B2NKlogBN+10modB=0
71 28 67 70 3eqtrd B2NKlogBN+1KdigitBN=0