Metamath Proof Explorer


Theorem dochsatshpb

Description: The orthocomplement of a subspace atom is a hyperplane. (Contributed by NM, 29-Oct-2014)

Ref Expression
Hypotheses dochsatshpb.h H=LHypK
dochsatshpb.o ˙=ocHKW
dochsatshpb.u U=DVecHKW
dochsatshpb.s S=LSubSpU
dochsatshpb.a A=LSAtomsU
dochsatshpb.y Y=LSHypU
dochsatshpb.k φKHLWH
dochsatshpb.q φQS
Assertion dochsatshpb φQA˙QY

Proof

Step Hyp Ref Expression
1 dochsatshpb.h H=LHypK
2 dochsatshpb.o ˙=ocHKW
3 dochsatshpb.u U=DVecHKW
4 dochsatshpb.s S=LSubSpU
5 dochsatshpb.a A=LSAtomsU
6 dochsatshpb.y Y=LSHypU
7 dochsatshpb.k φKHLWH
8 dochsatshpb.q φQS
9 7 adantr φQAKHLWH
10 simpr φQAQA
11 1 3 2 5 6 9 10 dochsatshp φQA˙QY
12 eqid BaseU=BaseU
13 12 4 lssss QSQBaseU
14 8 13 syl φQBaseU
15 eqid DIsoHKW=DIsoHKW
16 1 15 3 12 2 dochcl KHLWHQBaseU˙QranDIsoHKW
17 7 14 16 syl2anc φ˙QranDIsoHKW
18 1 15 2 dochoc KHLWH˙QranDIsoHKW˙˙˙Q=˙Q
19 7 17 18 syl2anc φ˙˙˙Q=˙Q
20 19 adantr φ˙QY˙˙˙Q=˙Q
21 1 3 7 dvhlmod φULMod
22 21 adantr φ˙QYULMod
23 simpr φ˙QY˙QY
24 12 6 22 23 lshpne φ˙QY˙QBaseU
25 20 24 eqnetrd φ˙QY˙˙˙QBaseU
26 eqid 0U=0U
27 1 3 12 2 dochssv KHLWHQBaseU˙QBaseU
28 7 14 27 syl2anc φ˙QBaseU
29 1 2 3 12 26 7 28 dochn0nv φ˙˙Q0U˙˙˙QBaseU
30 29 adantr φ˙QY˙˙Q0U˙˙˙QBaseU
31 25 30 mpbird φ˙QY˙˙Q0U
32 1 3 12 4 2 dochlss KHLWHQBaseU˙QS
33 7 14 32 syl2anc φ˙QS
34 12 4 lssss ˙QS˙QBaseU
35 33 34 syl φ˙QBaseU
36 1 3 12 4 2 dochlss KHLWH˙QBaseU˙˙QS
37 7 35 36 syl2anc φ˙˙QS
38 37 adantr φ˙QY˙˙QS
39 26 4 lssne0 ˙˙QS˙˙Q0Uv˙˙Qv0U
40 38 39 syl φ˙QY˙˙Q0Uv˙˙Qv0U
41 31 40 mpbid φ˙QYv˙˙Qv0U
42 7 adantr φ˙QYKHLWH
43 42 3ad2ant1 φ˙QYv˙˙Qv0UKHLWH
44 17 adantr φ˙QY˙QranDIsoHKW
45 44 3ad2ant1 φ˙QYv˙˙Qv0U˙QranDIsoHKW
46 43 45 18 syl2anc φ˙QYv˙˙Qv0U˙˙˙Q=˙Q
47 eqid LSpanU=LSpanU
48 22 3ad2ant1 φ˙QYv˙˙Qv0UULMod
49 38 3ad2ant1 φ˙QYv˙˙Qv0U˙˙QS
50 simp2 φ˙QYv˙˙Qv0Uv˙˙Q
51 4 47 48 49 50 lspsnel5a φ˙QYv˙˙Qv0ULSpanUv˙˙Q
52 12 4 lssel ˙˙QSv˙˙QvBaseU
53 49 50 52 syl2anc φ˙QYv˙˙Qv0UvBaseU
54 1 3 12 47 15 dihlsprn KHLWHvBaseULSpanUvranDIsoHKW
55 43 53 54 syl2anc φ˙QYv˙˙Qv0ULSpanUvranDIsoHKW
56 1 15 3 12 2 dochcl KHLWH˙QBaseU˙˙QranDIsoHKW
57 7 35 56 syl2anc φ˙˙QranDIsoHKW
58 57 adantr φ˙QY˙˙QranDIsoHKW
59 58 3ad2ant1 φ˙QYv˙˙Qv0U˙˙QranDIsoHKW
60 1 15 2 43 55 59 dochord φ˙QYv˙˙Qv0ULSpanUv˙˙Q˙˙˙Q˙LSpanUv
61 51 60 mpbid φ˙QYv˙˙Qv0U˙˙˙Q˙LSpanUv
62 46 61 eqsstrrd φ˙QYv˙˙Qv0U˙Q˙LSpanUv
63 1 3 7 dvhlvec φULVec
64 63 adantr φ˙QYULVec
65 64 3ad2ant1 φ˙QYv˙˙Qv0UULVec
66 simp1r φ˙QYv˙˙Qv0U˙QY
67 simp3 φ˙QYv˙˙Qv0Uv0U
68 12 47 26 5 lsatlspsn2 ULModvBaseUv0ULSpanUvA
69 48 53 67 68 syl3anc φ˙QYv˙˙Qv0ULSpanUvA
70 1 3 2 5 6 43 69 dochsatshp φ˙QYv˙˙Qv0U˙LSpanUvY
71 6 65 66 70 lshpcmp φ˙QYv˙˙Qv0U˙Q˙LSpanUv˙Q=˙LSpanUv
72 62 71 mpbid φ˙QYv˙˙Qv0U˙Q=˙LSpanUv
73 72 fveq2d φ˙QYv˙˙Qv0U˙˙Q=˙˙LSpanUv
74 1 15 2 dochoc KHLWHLSpanUvranDIsoHKW˙˙LSpanUv=LSpanUv
75 43 55 74 syl2anc φ˙QYv˙˙Qv0U˙˙LSpanUv=LSpanUv
76 73 75 eqtrd φ˙QYv˙˙Qv0U˙˙Q=LSpanUv
77 76 69 eqeltrd φ˙QYv˙˙Qv0U˙˙QA
78 77 rexlimdv3a φ˙QYv˙˙Qv0U˙˙QA
79 41 78 mpd φ˙QY˙˙QA
80 8 adantr φ˙QYQS
81 1 2 3 4 5 42 80 dochsat φ˙QY˙˙QAQA
82 79 81 mpbid φ˙QYQA
83 11 82 impbida φQA˙QY