Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eldprdi.0 | |
|
eldprdi.w | |
||
eldprdi.1 | |
||
eldprdi.2 | |
||
eldprdi.3 | |
||
dprdfadd.4 | |
||
dprdfsub.b | |
||
Assertion | dprdfsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldprdi.0 | |
|
2 | eldprdi.w | |
|
3 | eldprdi.1 | |
|
4 | eldprdi.2 | |
|
5 | eldprdi.3 | |
|
6 | dprdfadd.4 | |
|
7 | dprdfsub.b | |
|
8 | eqid | |
|
9 | 2 3 4 5 8 | dprdff | |
10 | 9 | ffvelcdmda | |
11 | 2 3 4 6 8 | dprdff | |
12 | 11 | ffvelcdmda | |
13 | eqid | |
|
14 | eqid | |
|
15 | 8 13 14 7 | grpsubval | |
16 | 10 12 15 | syl2anc | |
17 | 16 | mpteq2dva | |
18 | 3 4 | dprddomcld | |
19 | 9 | feqmptd | |
20 | 11 | feqmptd | |
21 | 18 10 12 19 20 | offval2 | |
22 | fvexd | |
|
23 | dprdgrp | |
|
24 | 3 23 | syl | |
25 | 8 14 24 | grpinvf1o | |
26 | f1of | |
|
27 | 25 26 | syl | |
28 | 27 | feqmptd | |
29 | fveq2 | |
|
30 | 12 20 28 29 | fmptco | |
31 | 18 10 22 19 30 | offval2 | |
32 | 17 21 31 | 3eqtr4d | |
33 | 1 2 3 4 6 14 | dprdfinv | |
34 | 33 | simpld | |
35 | 1 2 3 4 5 34 13 | dprdfadd | |
36 | 35 | simpld | |
37 | 32 36 | eqeltrd | |
38 | 32 | oveq2d | |
39 | 33 | simprd | |
40 | 39 | oveq2d | |
41 | 35 | simprd | |
42 | 8 | dprdssv | |
43 | 1 2 3 4 5 | eldprdi | |
44 | 42 43 | sselid | |
45 | 1 2 3 4 6 | eldprdi | |
46 | 42 45 | sselid | |
47 | 8 13 14 7 | grpsubval | |
48 | 44 46 47 | syl2anc | |
49 | 40 41 48 | 3eqtr4d | |
50 | 38 49 | eqtrd | |
51 | 37 50 | jca | |