Metamath Proof Explorer


Theorem dprdfsub

Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)

Ref Expression
Hypotheses eldprdi.0 0˙=0G
eldprdi.w W=hiISi|finSupp0˙h
eldprdi.1 φGdomDProdS
eldprdi.2 φdomS=I
eldprdi.3 φFW
dprdfadd.4 φHW
dprdfsub.b -˙=-G
Assertion dprdfsub φF-˙fHWGF-˙fH=GF-˙GH

Proof

Step Hyp Ref Expression
1 eldprdi.0 0˙=0G
2 eldprdi.w W=hiISi|finSupp0˙h
3 eldprdi.1 φGdomDProdS
4 eldprdi.2 φdomS=I
5 eldprdi.3 φFW
6 dprdfadd.4 φHW
7 dprdfsub.b -˙=-G
8 eqid BaseG=BaseG
9 2 3 4 5 8 dprdff φF:IBaseG
10 9 ffvelcdmda φkIFkBaseG
11 2 3 4 6 8 dprdff φH:IBaseG
12 11 ffvelcdmda φkIHkBaseG
13 eqid +G=+G
14 eqid invgG=invgG
15 8 13 14 7 grpsubval FkBaseGHkBaseGFk-˙Hk=Fk+GinvgGHk
16 10 12 15 syl2anc φkIFk-˙Hk=Fk+GinvgGHk
17 16 mpteq2dva φkIFk-˙Hk=kIFk+GinvgGHk
18 3 4 dprddomcld φIV
19 9 feqmptd φF=kIFk
20 11 feqmptd φH=kIHk
21 18 10 12 19 20 offval2 φF-˙fH=kIFk-˙Hk
22 fvexd φkIinvgGHkV
23 dprdgrp GdomDProdSGGrp
24 3 23 syl φGGrp
25 8 14 24 grpinvf1o φinvgG:BaseG1-1 ontoBaseG
26 f1of invgG:BaseG1-1 ontoBaseGinvgG:BaseGBaseG
27 25 26 syl φinvgG:BaseGBaseG
28 27 feqmptd φinvgG=xBaseGinvgGx
29 fveq2 x=HkinvgGx=invgGHk
30 12 20 28 29 fmptco φinvgGH=kIinvgGHk
31 18 10 22 19 30 offval2 φF+GfinvgGH=kIFk+GinvgGHk
32 17 21 31 3eqtr4d φF-˙fH=F+GfinvgGH
33 1 2 3 4 6 14 dprdfinv φinvgGHWGinvgGH=invgGGH
34 33 simpld φinvgGHW
35 1 2 3 4 5 34 13 dprdfadd φF+GfinvgGHWGF+GfinvgGH=GF+GGinvgGH
36 35 simpld φF+GfinvgGHW
37 32 36 eqeltrd φF-˙fHW
38 32 oveq2d φGF-˙fH=GF+GfinvgGH
39 33 simprd φGinvgGH=invgGGH
40 39 oveq2d φGF+GGinvgGH=GF+GinvgGGH
41 35 simprd φGF+GfinvgGH=GF+GGinvgGH
42 8 dprdssv GDProdSBaseG
43 1 2 3 4 5 eldprdi φGFGDProdS
44 42 43 sselid φGFBaseG
45 1 2 3 4 6 eldprdi φGHGDProdS
46 42 45 sselid φGHBaseG
47 8 13 14 7 grpsubval GFBaseGGHBaseGGF-˙GH=GF+GinvgGGH
48 44 46 47 syl2anc φGF-˙GH=GF+GinvgGGH
49 40 41 48 3eqtr4d φGF+GfinvgGH=GF-˙GH
50 38 49 eqtrd φGF-˙fH=GF-˙GH
51 37 50 jca φF-˙fHWGF-˙fH=GF-˙GH