Metamath Proof Explorer


Theorem dvdsprmpweqle

Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021)

Ref Expression
Assertion dvdsprmpweqle PAN0APNn0nNA=Pn

Proof

Step Hyp Ref Expression
1 dvdsprmpweq PAN0APNn0A=Pn
2 1 imp PAN0APNn0A=Pn
3 nn0re N0N
4 3 3ad2ant3 PAN0N
5 4 adantr PAN0APNN
6 nn0re n0n
7 5 6 anim12ci PAN0APNn0nN
8 7 adantr PAN0APNn0A=PnnN
9 lelttric nNnNN<n
10 8 9 syl PAN0APNn0A=PnnNN<n
11 breq1 A=PnAPNPnPN
12 11 adantl PAN0n0A=PnAPNPnPN
13 prmnn PP
14 13 nnnn0d PP0
15 14 3ad2ant1 PAN0P0
16 15 adantr PAN0n0P0
17 simpr PAN0n0n0
18 16 17 nn0expcld PAN0n0Pn0
19 18 nn0zd PAN0n0Pn
20 13 nncnd PP
21 20 3ad2ant1 PAN0P
22 21 adantr PAN0n0P
23 13 nnne0d PP0
24 23 3ad2ant1 PAN0P0
25 24 adantr PAN0n0P0
26 nn0z n0n
27 26 adantl PAN0n0n
28 22 25 27 expne0d PAN0n0Pn0
29 simp3 PAN0N0
30 29 adantr PAN0n0N0
31 16 30 nn0expcld PAN0n0PN0
32 31 nn0zd PAN0n0PN
33 dvdsval2 PnPn0PNPnPNPNPn
34 19 28 32 33 syl3anc PAN0n0PnPNPNPn
35 20 23 jca PPP0
36 35 3ad2ant1 PAN0PP0
37 nn0z N0N
38 37 3ad2ant3 PAN0N
39 38 26 anim12i PAN0n0Nn
40 expsub PP0NnPNn=PNPn
41 40 eqcomd PP0NnPNPn=PNn
42 36 39 41 syl2an2r PAN0n0PNPn=PNn
43 42 eleq1d PAN0n0PNPnPNn
44 22 adantr PAN0n0N<nP
45 nn0cn N0N
46 45 3ad2ant3 PAN0N
47 46 adantr PAN0n0N
48 nn0cn n0n
49 48 adantl PAN0n0n
50 47 49 subcld PAN0n0Nn
51 50 adantr PAN0n0N<nNn
52 46 48 anim12i PAN0n0Nn
53 52 adantr PAN0n0N<nNn
54 negsubdi2 NnNn=nN
55 53 54 syl PAN0n0N<nNn=nN
56 29 anim1ci PAN0n0n0N0
57 ltsubnn0 n0N0N<nnN0
58 56 57 syl PAN0n0N<nnN0
59 58 imp PAN0n0N<nnN0
60 55 59 eqeltrd PAN0n0N<nNn0
61 expneg2 PNnNn0PNn=1PNn
62 44 51 60 61 syl3anc PAN0n0N<nPNn=1PNn
63 62 eleq1d PAN0n0N<nPNn1PNn
64 13 nnred PP
65 64 3ad2ant1 PAN0P
66 65 adantr PAN0n0P
67 66 adantr PAN0n0N<nP
68 67 59 reexpcld PAN0n0N<nPnN
69 znnsub NnN<nnN
70 39 69 syl PAN0n0N<nnN
71 70 biimpa PAN0n0N<nnN
72 prmgt1 P1<P
73 72 3ad2ant1 PAN01<P
74 73 adantr PAN0n01<P
75 74 adantr PAN0n0N<n1<P
76 expgt1 PnN1<P1<PnN
77 67 71 75 76 syl3anc PAN0n0N<n1<PnN
78 68 77 jca PAN0n0N<nPnN1<PnN
79 oveq2 Nn=nNPNn=PnN
80 79 eleq1d Nn=nNPNnPnN
81 79 breq2d Nn=nN1<PNn1<PnN
82 80 81 anbi12d Nn=nNPNn1<PNnPnN1<PnN
83 78 82 syl5ibrcom PAN0n0N<nNn=nNPNn1<PNn
84 55 83 mpd PAN0n0N<nPNn1<PNn
85 recnz PNn1<PNn¬1PNn
86 84 85 syl PAN0n0N<n¬1PNn
87 86 pm2.21d PAN0n0N<n1PNnnN
88 63 87 sylbid PAN0n0N<nPNnnN
89 88 ex PAN0n0N<nPNnnN
90 89 com23 PAN0n0PNnN<nnN
91 43 90 sylbid PAN0n0PNPnN<nnN
92 34 91 sylbid PAN0n0PnPNN<nnN
93 92 adantr PAN0n0A=PnPnPNN<nnN
94 12 93 sylbid PAN0n0A=PnAPNN<nnN
95 94 ex PAN0n0A=PnAPNN<nnN
96 95 com23 PAN0n0APNA=PnN<nnN
97 96 ex PAN0n0APNA=PnN<nnN
98 97 com23 PAN0APNn0A=PnN<nnN
99 98 imp41 PAN0APNn0A=PnN<nnN
100 99 com12 N<nPAN0APNn0A=PnnN
101 100 jao1i nNN<nPAN0APNn0A=PnnN
102 10 101 mpcom PAN0APNn0A=PnnN
103 simpr PAN0APNn0A=PnA=Pn
104 102 103 jca PAN0APNn0A=PnnNA=Pn
105 104 ex PAN0APNn0A=PnnNA=Pn
106 105 reximdva PAN0APNn0A=Pnn0nNA=Pn
107 2 106 mpd PAN0APNn0nNA=Pn
108 107 ex PAN0APNn0nNA=Pn