Metamath Proof Explorer


Theorem dvexp

Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Assertion dvexp NdxxNdx=xNxN1

Proof

Step Hyp Ref Expression
1 oveq2 n=1xn=x1
2 1 mpteq2dv n=1xxn=xx1
3 2 oveq2d n=1dxxndx=dxx1dx
4 id n=1n=1
5 oveq1 n=1n1=11
6 5 oveq2d n=1xn1=x11
7 4 6 oveq12d n=1nxn1=1x11
8 7 mpteq2dv n=1xnxn1=x1x11
9 3 8 eqeq12d n=1dxxndx=xnxn1dxx1dx=x1x11
10 oveq2 n=kxn=xk
11 10 mpteq2dv n=kxxn=xxk
12 11 oveq2d n=kdxxndx=dxxkdx
13 id n=kn=k
14 oveq1 n=kn1=k1
15 14 oveq2d n=kxn1=xk1
16 13 15 oveq12d n=knxn1=kxk1
17 16 mpteq2dv n=kxnxn1=xkxk1
18 12 17 eqeq12d n=kdxxndx=xnxn1dxxkdx=xkxk1
19 oveq2 n=k+1xn=xk+1
20 19 mpteq2dv n=k+1xxn=xxk+1
21 20 oveq2d n=k+1dxxndx=dxxk+1dx
22 id n=k+1n=k+1
23 oveq1 n=k+1n1=k+1-1
24 23 oveq2d n=k+1xn1=xk+1-1
25 22 24 oveq12d n=k+1nxn1=k+1xk+1-1
26 25 mpteq2dv n=k+1xnxn1=xk+1xk+1-1
27 21 26 eqeq12d n=k+1dxxndx=xnxn1dxxk+1dx=xk+1xk+1-1
28 oveq2 n=Nxn=xN
29 28 mpteq2dv n=Nxxn=xxN
30 29 oveq2d n=Ndxxndx=dxxNdx
31 id n=Nn=N
32 oveq1 n=Nn1=N1
33 32 oveq2d n=Nxn1=xN1
34 31 33 oveq12d n=Nnxn1=NxN1
35 34 mpteq2dv n=Nxnxn1=xNxN1
36 30 35 eqeq12d n=Ndxxndx=xnxn1dxxNdx=xNxN1
37 exp1 xx1=x
38 37 mpteq2ia xx1=xx
39 mptresid I=xx
40 38 39 eqtr4i xx1=I
41 40 oveq2i dxx1dx=DI
42 1m1e0 11=0
43 42 oveq2i x11=x0
44 exp0 xx0=1
45 43 44 eqtrid xx11=1
46 45 oveq2d x1x11=11
47 1t1e1 11=1
48 46 47 eqtrdi x1x11=1
49 48 mpteq2ia x1x11=x1
50 fconstmpt ×1=x1
51 49 50 eqtr4i x1x11=×1
52 dvid DI=×1
53 51 52 eqtr4i x1x11=DI
54 41 53 eqtr4i dxx1dx=x1x11
55 nncn kk
56 55 adantr kxk
57 ax-1cn 1
58 pncan k1k+1-1=k
59 56 57 58 sylancl kxk+1-1=k
60 59 oveq2d kxxk+1-1=xk
61 60 oveq2d kxk+1xk+1-1=k+1xk
62 57 a1i kx1
63 id xx
64 nnnn0 kk0
65 expcl xk0xk
66 63 64 65 syl2anr kxxk
67 56 62 66 adddird kxk+1xk=kxk+1xk
68 66 mullidd kx1xk=xk
69 68 oveq2d kxkxk+1xk=kxk+xk
70 61 67 69 3eqtrd kxk+1xk+1-1=kxk+xk
71 70 mpteq2dva kxk+1xk+1-1=xkxk+xk
72 cnex V
73 72 a1i kV
74 56 66 mulcld kxkxk
75 nnm1nn0 kk10
76 expcl xk10xk1
77 63 75 76 syl2anr kxxk1
78 56 77 mulcld kxkxk1
79 simpr kxx
80 eqidd kxkxk1=xkxk1
81 39 a1i kI=xx
82 73 78 79 80 81 offval2 kxkxk1×fI=xkxk1x
83 56 77 79 mulassd kxkxk1x=kxk1x
84 expm1t xkxk=xk1x
85 84 ancoms kxxk=xk1x
86 85 oveq2d kxkxk=kxk1x
87 83 86 eqtr4d kxkxk1x=kxk
88 87 mpteq2dva kxkxk1x=xkxk
89 82 88 eqtrd kxkxk1×fI=xkxk
90 52 50 eqtri DI=x1
91 90 a1i kDI=x1
92 eqidd kxxk=xxk
93 73 62 66 91 92 offval2 kI×fxxk=x1xk
94 68 mpteq2dva kx1xk=xxk
95 93 94 eqtrd kI×fxxk=xxk
96 73 74 66 89 95 offval2 kxkxk1×fI+fI×fxxk=xkxk+xk
97 71 96 eqtr4d kxk+1xk+1-1=xkxk1×fI+fI×fxxk
98 oveq1 dxxkdx=xkxk1dxxkdx×fI=xkxk1×fI
99 98 oveq1d dxxkdx=xkxk1dxxkdx×fI+fI×fxxk=xkxk1×fI+fI×fxxk
100 99 eqcomd dxxkdx=xkxk1xkxk1×fI+fI×fxxk=dxxkdx×fI+fI×fxxk
101 97 100 sylan9eq kdxxkdx=xkxk1xk+1xk+1-1=dxxkdx×fI+fI×fxxk
102 cnelprrecn
103 102 a1i kdxxkdx=xkxk1
104 66 fmpttd kxxk:
105 104 adantr kdxxkdx=xkxk1xxk:
106 f1oi I:1-1 onto
107 f1of I:1-1 ontoI:
108 106 107 mp1i kdxxkdx=xkxk1I:
109 simpr kdxxkdx=xkxk1dxxkdx=xkxk1
110 109 dmeqd kdxxkdx=xkxk1domdxxkdx=domxkxk1
111 78 fmpttd kxkxk1:
112 111 adantr kdxxkdx=xkxk1xkxk1:
113 112 fdmd kdxxkdx=xkxk1domxkxk1=
114 110 113 eqtrd kdxxkdx=xkxk1domdxxkdx=
115 1ex 1V
116 115 fconst ×1:1
117 52 feq1i I:1×1:1
118 116 117 mpbir I:1
119 118 fdmi domI=
120 119 a1i kdxxkdx=xkxk1domI=
121 103 105 108 114 120 dvmulf kdxxkdx=xkxk1Dxxk×fI=dxxkdx×fI+fI×fxxk
122 73 66 79 92 81 offval2 kxxk×fI=xxkx
123 expp1 xk0xk+1=xkx
124 63 64 123 syl2anr kxxk+1=xkx
125 124 mpteq2dva kxxk+1=xxkx
126 122 125 eqtr4d kxxk×fI=xxk+1
127 126 oveq2d kDxxk×fI=dxxk+1dx
128 127 adantr kdxxkdx=xkxk1Dxxk×fI=dxxk+1dx
129 101 121 128 3eqtr2rd kdxxkdx=xkxk1dxxk+1dx=xk+1xk+1-1
130 129 ex kdxxkdx=xkxk1dxxk+1dx=xk+1xk+1-1
131 9 18 27 36 54 130 nnind NdxxNdx=xNxN1