Metamath Proof Explorer


Theorem eldioph2

Description: Construct a Diophantine set from a polynomial with witness variables drawn from any set whatsoever, via mzpcompact2 . (Contributed by Stefan O'Rear, 8-Oct-2014) (Revised by Stefan O'Rear, 5-Jun-2015)

Ref Expression
Assertion eldioph2 N0SV1NSPmzPolySt|u0St=u1NPu=0DiophN

Proof

Step Hyp Ref Expression
1 mzpcompact2 PmzPolySaFinbmzPolyaaSP=eSbea
2 1 3ad2ant3 N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbea
3 fveq1 P=eSbeaPu=eSbeau
4 3 eqeq1d P=eSbeaPu=0eSbeau=0
5 4 anbi2d P=eSbeat=u1NPu=0t=u1NeSbeau=0
6 5 rexbidv P=eSbeau0St=u1NPu=0u0St=u1NeSbeau=0
7 6 abbidv P=eSbeat|u0St=u1NPu=0=t|u0St=u1NeSbeau=0
8 7 ad2antll N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbeat|u0St=u1NPu=0=t|u0St=u1NeSbeau=0
9 simplll N0SV1NSaFinbmzPolyaaSN0
10 simplrl N0SV1NSaFinbmzPolyaaSaFin
11 fzfi 1NFin
12 unfi aFin1NFina1NFin
13 10 11 12 sylancl N0SV1NSaFinbmzPolyaaSa1NFin
14 ssun2 1Na1N
15 14 a1i N0SV1NSaFinbmzPolyaaS1Na1N
16 eldioph2lem1 N0a1NFin1Na1NcNdVd:1c1-1 ontoa1Nd1N=I1N
17 9 13 15 16 syl3anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1N
18 f1ococnv2 d:1c1-1 ontoa1Ndd-1=Ia1N
19 18 ad2antrl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Ndd-1=Ia1N
20 19 reseq1d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Ndd-1a=Ia1Na
21 ssun1 aa1N
22 resabs1 aa1NIa1Na=Ia
23 21 22 ax-mp Ia1Na=Ia
24 20 23 eqtr2di N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NIa=dd-1a
25 resco dd-1a=dd-1a
26 24 25 eqtrdi N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NIa=dd-1a
27 26 adantr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSIa=dd-1a
28 27 coeq2d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSeIa=edd-1a
29 coires1 eIa=ea
30 coass edd-1a=edd-1a
31 30 eqcomi edd-1a=edd-1a
32 28 29 31 3eqtr3g N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSea=edd-1a
33 32 fveq2d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSbea=bedd-1a
34 ovexd N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeS1cV
35 simpr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSeS
36 f1of1 d:1c1-1 ontoa1Nd:1c1-1a1N
37 36 ad2antrl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nd:1c1-1a1N
38 simpr N0SV1NSaFinbmzPolyaaSaS
39 simprr N0SV1NS1NS
40 39 ad2antrr N0SV1NSaFinbmzPolyaaS1NS
41 38 40 unssd N0SV1NSaFinbmzPolyaaSa1NS
42 41 ad2antrr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Na1NS
43 f1ss d:1c1-1a1Na1NSd:1c1-1S
44 37 42 43 syl2anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nd:1c1-1S
45 f1f d:1c1-1Sd:1cS
46 44 45 syl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nd:1cS
47 46 adantr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSd:1cS
48 mapco2g 1cVeSd:1cSed1c
49 34 35 47 48 syl3anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSed1c
50 coeq1 h=edhd-1a=edd-1a
51 50 fveq2d h=edbhd-1a=bedd-1a
52 eqid h1cbhd-1a=h1cbhd-1a
53 fvex bedd-1aV
54 51 52 53 fvmpt ed1ch1cbhd-1aed=bedd-1a
55 49 54 syl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSh1cbhd-1aed=bedd-1a
56 33 55 eqtr4d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSbea=h1cbhd-1aed
57 56 mpteq2dva N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSbea=eSh1cbhd-1aed
58 57 fveq1d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSbeau=eSh1cbhd-1aedu
59 58 eqeq1d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NeSbeau=0eSh1cbhd-1aedu=0
60 59 anbi2d N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt=u1NeSbeau=0t=u1NeSh1cbhd-1aedu=0
61 60 rexbidv N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nu0St=u1NeSbeau=0u0St=u1NeSh1cbhd-1aedu=0
62 61 abbidv N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSbeau=0=t|u0St=u1NeSh1cbhd-1aedu=0
63 simplrl N0SV1NSaFinbmzPolyaSV
64 63 ad3antrrr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NSV
65 simprr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nd1N=I1N
66 diophrw SVd:1c1-1Sd1N=I1Nt|u0St=u1NeSh1cbhd-1aedu=0=t|g01ct=g1Nh1cbhd-1ag=0
67 64 44 65 66 syl3anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSh1cbhd-1aedu=0=t|g01ct=g1Nh1cbhd-1ag=0
68 62 67 eqtrd N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSbeau=0=t|g01ct=g1Nh1cbhd-1ag=0
69 simp-5l N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NN0
70 simplrl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NcN
71 ovexd N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1N1cV
72 simplrr N0SV1NSaFinbmzPolyaaSbmzPolya
73 72 ad2antrr N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1NbmzPolya
74 f1ocnv d:1c1-1 ontoa1Nd-1:a1N1-1 onto1c
75 f1of d-1:a1N1-1 onto1cd-1:a1N1c
76 74 75 syl d:1c1-1 ontoa1Nd-1:a1N1c
77 fssres d-1:a1N1caa1Nd-1a:a1c
78 76 21 77 sylancl d:1c1-1 ontoa1Nd-1a:a1c
79 78 ad2antrl N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nd-1a:a1c
80 mzprename 1cVbmzPolyad-1a:a1ch1cbhd-1amzPoly1c
81 71 73 79 80 syl3anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nh1cbhd-1amzPoly1c
82 eldioph N0cNh1cbhd-1amzPoly1ct|g01ct=g1Nh1cbhd-1ag=0DiophN
83 69 70 81 82 syl3anc N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|g01ct=g1Nh1cbhd-1ag=0DiophN
84 68 83 eqeltrd N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSbeau=0DiophN
85 84 ex N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSbeau=0DiophN
86 85 rexlimdvva N0SV1NSaFinbmzPolyaaScNdVd:1c1-1 ontoa1Nd1N=I1Nt|u0St=u1NeSbeau=0DiophN
87 17 86 mpd N0SV1NSaFinbmzPolyaaSt|u0St=u1NeSbeau=0DiophN
88 87 exp31 N0SV1NSaFinbmzPolyaaSt|u0St=u1NeSbeau=0DiophN
89 88 3adant3 N0SV1NSPmzPolySaFinbmzPolyaaSt|u0St=u1NeSbeau=0DiophN
90 89 imp31 N0SV1NSPmzPolySaFinbmzPolyaaSt|u0St=u1NeSbeau=0DiophN
91 90 adantrr N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbeat|u0St=u1NeSbeau=0DiophN
92 8 91 eqeltrd N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbeat|u0St=u1NPu=0DiophN
93 92 ex N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbeat|u0St=u1NPu=0DiophN
94 93 rexlimdvva N0SV1NSPmzPolySaFinbmzPolyaaSP=eSbeat|u0St=u1NPu=0DiophN
95 2 94 mpd N0SV1NSPmzPolySt|u0St=u1NPu=0DiophN