Description: Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | enfixsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | bren | |
|
3 | 1 2 | sylib | |
4 | relen | |
|
5 | 4 | brrelex2i | |
6 | 5 | 3ad2ant3 | |
7 | 6 | adantr | |
8 | f1of | |
|
9 | 8 | adantl | |
10 | simpl1 | |
|
11 | 9 10 | ffvelcdmd | |
12 | simpl2 | |
|
13 | difsnen | |
|
14 | 7 11 12 13 | syl3anc | |
15 | bren | |
|
16 | 14 15 | sylib | |
17 | fvex | |
|
18 | 17 | a1i | |
19 | simpl2 | |
|
20 | f1osng | |
|
21 | 18 19 20 | syl2anc | |
22 | simprr | |
|
23 | disjdif | |
|
24 | 23 | a1i | |
25 | disjdif | |
|
26 | 25 | a1i | |
27 | f1oun | |
|
28 | 21 22 24 26 27 | syl22anc | |
29 | 8 | ad2antrl | |
30 | simpl1 | |
|
31 | 29 30 | ffvelcdmd | |
32 | uncom | |
|
33 | difsnid | |
|
34 | 32 33 | eqtrid | |
35 | 31 34 | syl | |
36 | uncom | |
|
37 | difsnid | |
|
38 | 36 37 | eqtrid | |
39 | 19 38 | syl | |
40 | f1oeq23 | |
|
41 | 35 39 40 | syl2anc | |
42 | 28 41 | mpbid | |
43 | simprl | |
|
44 | f1oco | |
|
45 | 42 43 44 | syl2anc | |
46 | f1ofn | |
|
47 | 46 | ad2antrl | |
48 | fvco2 | |
|
49 | 47 30 48 | syl2anc | |
50 | f1ofn | |
|
51 | 21 50 | syl | |
52 | f1ofn | |
|
53 | 52 | ad2antll | |
54 | 17 | snid | |
55 | 54 | a1i | |
56 | fvun1 | |
|
57 | 51 53 24 55 56 | syl112anc | |
58 | fvsng | |
|
59 | 18 19 58 | syl2anc | |
60 | 49 57 59 | 3eqtrd | |
61 | snex | |
|
62 | vex | |
|
63 | 61 62 | unex | |
64 | vex | |
|
65 | 63 64 | coex | |
66 | f1oeq1 | |
|
67 | fveq1 | |
|
68 | 67 | eqeq1d | |
69 | 66 68 | anbi12d | |
70 | 65 69 | spcev | |
71 | 45 60 70 | syl2anc | |
72 | 71 | expr | |
73 | 72 | exlimdv | |
74 | 16 73 | mpd | |
75 | 3 74 | exlimddv | |