Metamath Proof Explorer


Theorem enfixsn

Description: Given two equipollent sets, a bijection can always be chosen which fixes a single point. (Contributed by Stefan O'Rear, 9-Jul-2015)

Ref Expression
Assertion enfixsn AXBYXYff:X1-1 ontoYfA=B

Proof

Step Hyp Ref Expression
1 simp3 AXBYXYXY
2 bren XYgg:X1-1 ontoY
3 1 2 sylib AXBYXYgg:X1-1 ontoY
4 relen Rel
5 4 brrelex2i XYYV
6 5 3ad2ant3 AXBYXYYV
7 6 adantr AXBYXYg:X1-1 ontoYYV
8 f1of g:X1-1 ontoYg:XY
9 8 adantl AXBYXYg:X1-1 ontoYg:XY
10 simpl1 AXBYXYg:X1-1 ontoYAX
11 9 10 ffvelcdmd AXBYXYg:X1-1 ontoYgAY
12 simpl2 AXBYXYg:X1-1 ontoYBY
13 difsnen YVgAYBYYgAYB
14 7 11 12 13 syl3anc AXBYXYg:X1-1 ontoYYgAYB
15 bren YgAYBhh:YgA1-1 ontoYB
16 14 15 sylib AXBYXYg:X1-1 ontoYhh:YgA1-1 ontoYB
17 fvex gAV
18 17 a1i AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAV
19 simpl2 AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBBY
20 f1osng gAVBYgAB:gA1-1 ontoB
21 18 19 20 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAB:gA1-1 ontoB
22 simprr AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBh:YgA1-1 ontoYB
23 disjdif gAYgA=
24 23 a1i AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAYgA=
25 disjdif BYB=
26 25 a1i AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBBYB=
27 f1oun gAB:gA1-1 ontoBh:YgA1-1 ontoYBgAYgA=BYB=gABh:gAYgA1-1 ontoBYB
28 21 22 24 26 27 syl22anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABh:gAYgA1-1 ontoBYB
29 8 ad2antrl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBg:XY
30 simpl1 AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBAX
31 29 30 ffvelcdmd AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAY
32 uncom gAYgA=YgAgA
33 difsnid gAYYgAgA=Y
34 32 33 eqtrid gAYgAYgA=Y
35 31 34 syl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAYgA=Y
36 uncom BYB=YBB
37 difsnid BYYBB=Y
38 36 37 eqtrid BYBYB=Y
39 19 38 syl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBBYB=Y
40 f1oeq23 gAYgA=YBYB=YgABh:gAYgA1-1 ontoBYBgABh:Y1-1 ontoY
41 35 39 40 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABh:gAYgA1-1 ontoBYBgABh:Y1-1 ontoY
42 28 41 mpbid AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABh:Y1-1 ontoY
43 simprl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBg:X1-1 ontoY
44 f1oco gABh:Y1-1 ontoYg:X1-1 ontoYgABhg:X1-1 ontoY
45 42 43 44 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABhg:X1-1 ontoY
46 f1ofn g:X1-1 ontoYgFnX
47 46 ad2antrl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgFnX
48 fvco2 gFnXAXgABhgA=gABhgA
49 47 30 48 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABhgA=gABhgA
50 f1ofn gAB:gA1-1 ontoBgABFngA
51 21 50 syl AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABFngA
52 f1ofn h:YgA1-1 ontoYBhFnYgA
53 52 ad2antll AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBhFnYgA
54 17 snid gAgA
55 54 a1i AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgAgA
56 fvun1 gABFngAhFnYgAgAYgA=gAgAgABhgA=gABgA
57 51 53 24 55 56 syl112anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABhgA=gABgA
58 fvsng gAVBYgABgA=B
59 18 19 58 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABgA=B
60 49 57 59 3eqtrd AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBgABhgA=B
61 snex gABV
62 vex hV
63 61 62 unex gABhV
64 vex gV
65 63 64 coex gABhgV
66 f1oeq1 f=gABhgf:X1-1 ontoYgABhg:X1-1 ontoY
67 fveq1 f=gABhgfA=gABhgA
68 67 eqeq1d f=gABhgfA=BgABhgA=B
69 66 68 anbi12d f=gABhgf:X1-1 ontoYfA=BgABhg:X1-1 ontoYgABhgA=B
70 65 69 spcev gABhg:X1-1 ontoYgABhgA=Bff:X1-1 ontoYfA=B
71 45 60 70 syl2anc AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBff:X1-1 ontoYfA=B
72 71 expr AXBYXYg:X1-1 ontoYh:YgA1-1 ontoYBff:X1-1 ontoYfA=B
73 72 exlimdv AXBYXYg:X1-1 ontoYhh:YgA1-1 ontoYBff:X1-1 ontoYfA=B
74 16 73 mpd AXBYXYg:X1-1 ontoYff:X1-1 ontoYfA=B
75 3 74 exlimddv AXBYXYff:X1-1 ontoYfA=B