| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp3 |
|
| 2 |
|
bren |
|
| 3 |
1 2
|
sylib |
|
| 4 |
|
relen |
|
| 5 |
4
|
brrelex2i |
|
| 6 |
5
|
3ad2ant3 |
|
| 7 |
6
|
adantr |
|
| 8 |
|
f1of |
|
| 9 |
8
|
adantl |
|
| 10 |
|
simpl1 |
|
| 11 |
9 10
|
ffvelcdmd |
|
| 12 |
|
simpl2 |
|
| 13 |
|
difsnen |
|
| 14 |
7 11 12 13
|
syl3anc |
|
| 15 |
|
bren |
|
| 16 |
14 15
|
sylib |
|
| 17 |
|
fvex |
|
| 18 |
17
|
a1i |
|
| 19 |
|
simpl2 |
|
| 20 |
|
f1osng |
|
| 21 |
18 19 20
|
syl2anc |
|
| 22 |
|
simprr |
|
| 23 |
|
disjdif |
|
| 24 |
23
|
a1i |
|
| 25 |
|
disjdif |
|
| 26 |
25
|
a1i |
|
| 27 |
|
f1oun |
|
| 28 |
21 22 24 26 27
|
syl22anc |
|
| 29 |
8
|
ad2antrl |
|
| 30 |
|
simpl1 |
|
| 31 |
29 30
|
ffvelcdmd |
|
| 32 |
|
uncom |
|
| 33 |
|
difsnid |
|
| 34 |
32 33
|
eqtrid |
|
| 35 |
31 34
|
syl |
|
| 36 |
|
uncom |
|
| 37 |
|
difsnid |
|
| 38 |
36 37
|
eqtrid |
|
| 39 |
19 38
|
syl |
|
| 40 |
|
f1oeq23 |
|
| 41 |
35 39 40
|
syl2anc |
|
| 42 |
28 41
|
mpbid |
|
| 43 |
|
simprl |
|
| 44 |
|
f1oco |
|
| 45 |
42 43 44
|
syl2anc |
|
| 46 |
|
f1ofn |
|
| 47 |
46
|
ad2antrl |
|
| 48 |
|
fvco2 |
|
| 49 |
47 30 48
|
syl2anc |
|
| 50 |
|
f1ofn |
|
| 51 |
21 50
|
syl |
|
| 52 |
|
f1ofn |
|
| 53 |
52
|
ad2antll |
|
| 54 |
17
|
snid |
|
| 55 |
54
|
a1i |
|
| 56 |
|
fvun1 |
|
| 57 |
51 53 24 55 56
|
syl112anc |
|
| 58 |
|
fvsng |
|
| 59 |
18 19 58
|
syl2anc |
|
| 60 |
49 57 59
|
3eqtrd |
|
| 61 |
|
snex |
|
| 62 |
|
vex |
|
| 63 |
61 62
|
unex |
|
| 64 |
|
vex |
|
| 65 |
63 64
|
coex |
|
| 66 |
|
f1oeq1 |
|
| 67 |
|
fveq1 |
|
| 68 |
67
|
eqeq1d |
|
| 69 |
66 68
|
anbi12d |
|
| 70 |
65 69
|
spcev |
|
| 71 |
45 60 70
|
syl2anc |
|
| 72 |
71
|
expr |
|
| 73 |
72
|
exlimdv |
|
| 74 |
16 73
|
mpd |
|
| 75 |
3 74
|
exlimddv |
|