Metamath Proof Explorer


Theorem equivtotbnd

Description: If the metric M is "strongly finer" than N (meaning that there is a positive real constant R such that N ( x , y ) <_ R x. M ( x , y ) ), then total boundedness of M implies total boundedness of N . (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015)

Ref Expression
Hypotheses equivtotbnd.1 φMTotBndX
equivtotbnd.2 φNMetX
equivtotbnd.3 φR+
equivtotbnd.4 φxXyXxNyRxMy
Assertion equivtotbnd φNTotBndX

Proof

Step Hyp Ref Expression
1 equivtotbnd.1 φMTotBndX
2 equivtotbnd.2 φNMetX
3 equivtotbnd.3 φR+
4 equivtotbnd.4 φxXyXxNyRxMy
5 simpr φr+r+
6 3 adantr φr+R+
7 5 6 rpdivcld φr+rR+
8 1 adantr φr+MTotBndX
9 istotbnd3 MTotBndXMMetXs+v𝒫XFinxvxballMs=X
10 9 simprbi MTotBndXs+v𝒫XFinxvxballMs=X
11 8 10 syl φr+s+v𝒫XFinxvxballMs=X
12 oveq2 s=rRxballMs=xballMrR
13 12 iuneq2d s=rRxvxballMs=xvxballMrR
14 13 eqeq1d s=rRxvxballMs=XxvxballMrR=X
15 14 rexbidv s=rRv𝒫XFinxvxballMs=Xv𝒫XFinxvxballMrR=X
16 15 rspcv rR+s+v𝒫XFinxvxballMs=Xv𝒫XFinxvxballMrR=X
17 7 11 16 sylc φr+v𝒫XFinxvxballMrR=X
18 elfpw v𝒫XFinvXvFin
19 18 simplbi v𝒫XFinvX
20 19 adantl φr+v𝒫XFinvX
21 20 sselda φr+v𝒫XFinxvxX
22 eqid MetOpenN=MetOpenN
23 eqid MetOpenM=MetOpenM
24 9 simplbi MTotBndXMMetX
25 1 24 syl φMMetX
26 22 23 2 25 3 4 metss2lem φxXr+xballMrRxballNr
27 26 anass1rs φr+xXxballMrRxballNr
28 27 adantlr φr+v𝒫XFinxXxballMrRxballNr
29 21 28 syldan φr+v𝒫XFinxvxballMrRxballNr
30 29 ralrimiva φr+v𝒫XFinxvxballMrRxballNr
31 ss2iun xvxballMrRxballNrxvxballMrRxvxballNr
32 30 31 syl φr+v𝒫XFinxvxballMrRxvxballNr
33 sseq1 xvxballMrR=XxvxballMrRxvxballNrXxvxballNr
34 32 33 syl5ibcom φr+v𝒫XFinxvxballMrR=XXxvxballNr
35 2 ad3antrrr φr+v𝒫XFinxvNMetX
36 metxmet NMetXN∞MetX
37 35 36 syl φr+v𝒫XFinxvN∞MetX
38 simpllr φr+v𝒫XFinxvr+
39 38 rpxrd φr+v𝒫XFinxvr*
40 blssm N∞MetXxXr*xballNrX
41 37 21 39 40 syl3anc φr+v𝒫XFinxvxballNrX
42 41 ralrimiva φr+v𝒫XFinxvxballNrX
43 iunss xvxballNrXxvxballNrX
44 42 43 sylibr φr+v𝒫XFinxvxballNrX
45 34 44 jctild φr+v𝒫XFinxvxballMrR=XxvxballNrXXxvxballNr
46 eqss xvxballNr=XxvxballNrXXxvxballNr
47 45 46 syl6ibr φr+v𝒫XFinxvxballMrR=XxvxballNr=X
48 47 reximdva φr+v𝒫XFinxvxballMrR=Xv𝒫XFinxvxballNr=X
49 17 48 mpd φr+v𝒫XFinxvxballNr=X
50 49 ralrimiva φr+v𝒫XFinxvxballNr=X
51 istotbnd3 NTotBndXNMetXr+v𝒫XFinxvxballNr=X
52 2 50 51 sylanbrc φNTotBndX