Description: If the metric M is "strongly finer" than N (meaning that there is a positive real constant R such that N ( x , y ) <_ R x. M ( x , y ) ), then total boundedness of M implies total boundedness of N . (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then one is totally bounded iff the other is.) (Contributed by Mario Carneiro, 14-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | equivtotbnd.1 | |
|
equivtotbnd.2 | |
||
equivtotbnd.3 | |
||
equivtotbnd.4 | |
||
Assertion | equivtotbnd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equivtotbnd.1 | |
|
2 | equivtotbnd.2 | |
|
3 | equivtotbnd.3 | |
|
4 | equivtotbnd.4 | |
|
5 | simpr | |
|
6 | 3 | adantr | |
7 | 5 6 | rpdivcld | |
8 | 1 | adantr | |
9 | istotbnd3 | |
|
10 | 9 | simprbi | |
11 | 8 10 | syl | |
12 | oveq2 | |
|
13 | 12 | iuneq2d | |
14 | 13 | eqeq1d | |
15 | 14 | rexbidv | |
16 | 15 | rspcv | |
17 | 7 11 16 | sylc | |
18 | elfpw | |
|
19 | 18 | simplbi | |
20 | 19 | adantl | |
21 | 20 | sselda | |
22 | eqid | |
|
23 | eqid | |
|
24 | 9 | simplbi | |
25 | 1 24 | syl | |
26 | 22 23 2 25 3 4 | metss2lem | |
27 | 26 | anass1rs | |
28 | 27 | adantlr | |
29 | 21 28 | syldan | |
30 | 29 | ralrimiva | |
31 | ss2iun | |
|
32 | 30 31 | syl | |
33 | sseq1 | |
|
34 | 32 33 | syl5ibcom | |
35 | 2 | ad3antrrr | |
36 | metxmet | |
|
37 | 35 36 | syl | |
38 | simpllr | |
|
39 | 38 | rpxrd | |
40 | blssm | |
|
41 | 37 21 39 40 | syl3anc | |
42 | 41 | ralrimiva | |
43 | iunss | |
|
44 | 42 43 | sylibr | |
45 | 34 44 | jctild | |
46 | eqss | |
|
47 | 45 46 | syl6ibr | |
48 | 47 | reximdva | |
49 | 17 48 | mpd | |
50 | 49 | ralrimiva | |
51 | istotbnd3 | |
|
52 | 2 50 51 | sylanbrc | |