Metamath Proof Explorer


Theorem erngdvlem3-rN

Description: Lemma for eringring . (Contributed by NM, 6-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ernggrp.h-r H = LHyp K
ernggrp.d-r D = EDRing R K W
ernggrplem.b-r B = Base K
ernggrplem.t-r T = LTrn K W
ernggrplem.e-r E = TEndo K W
ernggrplem.p-r P = a E , b E f T a f b f
ernggrplem.o-r O = f T I B
ernggrplem.i-r I = a E f T a f -1
erngrnglem.m-r M = a E , b E b a
Assertion erngdvlem3-rN K HL W H D Ring

Proof

Step Hyp Ref Expression
1 ernggrp.h-r H = LHyp K
2 ernggrp.d-r D = EDRing R K W
3 ernggrplem.b-r B = Base K
4 ernggrplem.t-r T = LTrn K W
5 ernggrplem.e-r E = TEndo K W
6 ernggrplem.p-r P = a E , b E f T a f b f
7 ernggrplem.o-r O = f T I B
8 ernggrplem.i-r I = a E f T a f -1
9 erngrnglem.m-r M = a E , b E b a
10 eqid Base D = Base D
11 1 4 5 2 10 erngbase-rN K HL W H Base D = E
12 11 eqcomd K HL W H E = Base D
13 eqid + D = + D
14 1 4 5 2 13 erngfplus-rN K HL W H + D = a E , b E f T a f b f
15 6 14 eqtr4id K HL W H P = + D
16 eqid D = D
17 1 4 5 2 16 erngfmul-rN K HL W H D = a E , b E b a
18 9 17 eqtr4id K HL W H M = D
19 1 2 3 4 5 6 7 8 erngdvlem1-rN K HL W H D Grp
20 18 oveqd K HL W H s M t = s D t
21 20 3ad2ant1 K HL W H s E t E s M t = s D t
22 1 4 5 2 16 erngmul-rN K HL W H s E t E s D t = t s
23 22 3impb K HL W H s E t E s D t = t s
24 21 23 eqtrd K HL W H s E t E s M t = t s
25 1 5 tendococl K HL W H t E s E t s E
26 25 3com23 K HL W H s E t E t s E
27 24 26 eqeltrd K HL W H s E t E s M t E
28 18 oveqdr K HL W H s E t E u E t M u = t D u
29 1 4 5 2 16 erngmul-rN K HL W H t E u E t D u = u t
30 29 3adantr1 K HL W H s E t E u E t D u = u t
31 28 30 eqtrd K HL W H s E t E u E t M u = u t
32 31 coeq1d K HL W H s E t E u E t M u s = u t s
33 18 oveqd K HL W H s M t M u = s D t M u
34 33 adantr K HL W H s E t E u E s M t M u = s D t M u
35 simpl K HL W H s E t E u E K HL W H
36 simpr1 K HL W H s E t E u E s E
37 simpr3 K HL W H s E t E u E u E
38 simpr2 K HL W H s E t E u E t E
39 1 5 tendococl K HL W H u E t E u t E
40 35 37 38 39 syl3anc K HL W H s E t E u E u t E
41 31 40 eqeltrd K HL W H s E t E u E t M u E
42 1 4 5 2 16 erngmul-rN K HL W H s E t M u E s D t M u = t M u s
43 35 36 41 42 syl12anc K HL W H s E t E u E s D t M u = t M u s
44 34 43 eqtrd K HL W H s E t E u E s M t M u = t M u s
45 18 oveqd K HL W H s M t M u = s M t D u
46 45 adantr K HL W H s E t E u E s M t M u = s M t D u
47 27 3adant3r3 K HL W H s E t E u E s M t E
48 1 4 5 2 16 erngmul-rN K HL W H s M t E u E s M t D u = u s M t
49 35 47 37 48 syl12anc K HL W H s E t E u E s M t D u = u s M t
50 18 oveqdr K HL W H s E t E u E s M t = s D t
51 22 3adantr3 K HL W H s E t E u E s D t = t s
52 50 51 eqtrd K HL W H s E t E u E s M t = t s
53 52 coeq2d K HL W H s E t E u E u s M t = u t s
54 46 49 53 3eqtrd K HL W H s E t E u E s M t M u = u t s
55 coass u t s = u t s
56 54 55 eqtr4di K HL W H s E t E u E s M t M u = u t s
57 32 44 56 3eqtr4rd K HL W H s E t E u E s M t M u = s M t M u
58 1 4 5 6 tendodi2 K HL W H t E u E s E t P u s = t s P u s
59 35 38 37 36 58 syl13anc K HL W H s E t E u E t P u s = t s P u s
60 18 oveqd K HL W H s M t P u = s D t P u
61 60 adantr K HL W H s E t E u E s M t P u = s D t P u
62 1 4 5 6 tendoplcl K HL W H t E u E t P u E
63 35 38 37 62 syl3anc K HL W H s E t E u E t P u E
64 1 4 5 2 16 erngmul-rN K HL W H s E t P u E s D t P u = t P u s
65 35 36 63 64 syl12anc K HL W H s E t E u E s D t P u = t P u s
66 61 65 eqtrd K HL W H s E t E u E s M t P u = t P u s
67 18 oveqdr K HL W H s E t E u E s M u = s D u
68 1 4 5 2 16 erngmul-rN K HL W H s E u E s D u = u s
69 68 3adantr2 K HL W H s E t E u E s D u = u s
70 67 69 eqtrd K HL W H s E t E u E s M u = u s
71 52 70 oveq12d K HL W H s E t E u E s M t P s M u = t s P u s
72 59 66 71 3eqtr4d K HL W H s E t E u E s M t P u = s M t P s M u
73 1 4 5 6 tendodi1 K HL W H u E s E t E u s P t = u s P u t
74 35 37 36 38 73 syl13anc K HL W H s E t E u E u s P t = u s P u t
75 18 adantr K HL W H s E t E u E M = D
76 75 oveqd K HL W H s E t E u E s P t M u = s P t D u
77 1 4 5 6 tendoplcl K HL W H s E t E s P t E
78 77 3adant3r3 K HL W H s E t E u E s P t E
79 1 4 5 2 16 erngmul-rN K HL W H s P t E u E s P t D u = u s P t
80 35 78 37 79 syl12anc K HL W H s E t E u E s P t D u = u s P t
81 76 80 eqtrd K HL W H s E t E u E s P t M u = u s P t
82 70 31 oveq12d K HL W H s E t E u E s M u P t M u = u s P u t
83 74 81 82 3eqtr4d K HL W H s E t E u E s P t M u = s M u P t M u
84 1 4 5 tendoidcl K HL W H I T E
85 18 oveqd K HL W H I T M s = I T D s
86 85 adantr K HL W H s E I T M s = I T D s
87 simpl K HL W H s E K HL W H
88 84 adantr K HL W H s E I T E
89 simpr K HL W H s E s E
90 1 4 5 2 16 erngmul-rN K HL W H I T E s E I T D s = s I T
91 87 88 89 90 syl12anc K HL W H s E I T D s = s I T
92 1 4 5 tendo1mulr K HL W H s E s I T = s
93 86 91 92 3eqtrd K HL W H s E I T M s = s
94 18 oveqd K HL W H s M I T = s D I T
95 94 adantr K HL W H s E s M I T = s D I T
96 1 4 5 2 16 erngmul-rN K HL W H s E I T E s D I T = I T s
97 87 89 88 96 syl12anc K HL W H s E s D I T = I T s
98 1 4 5 tendo1mul K HL W H s E I T s = s
99 95 97 98 3eqtrd K HL W H s E s M I T = s
100 12 15 18 19 27 57 72 83 84 93 99 isringd K HL W H D Ring