Metamath Proof Explorer


Theorem erngdvlem4-rN

Description: Lemma for erngdv . (Contributed by NM, 11-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ernggrp.h-r H=LHypK
ernggrp.d-r D=EDRingRKW
ernggrplem.b-r B=BaseK
ernggrplem.t-r T=LTrnKW
ernggrplem.e-r E=TEndoKW
ernggrplem.p-r P=aE,bEfTafbf
ernggrplem.o-r O=fTIB
ernggrplem.i-r I=aEfTaf-1
erngrnglem.m-r M=aE,bEba
edlemk6.j-r ˙=joinK
edlemk6.m-r ˙=meetK
edlemk6.r-r R=trLKW
edlemk6.p-r Q=ocKW
edlemk6.z-r Z=Q˙Rb˙hQ˙Rbsh-1
edlemk6.y-r Y=Q˙Rg˙Z˙Rgb-1
edlemk6.x-r X=ιzT|bTbIBRbRshRbRgzQ=Y
edlemk6.u-r U=gTifsh=hgX
Assertion erngdvlem4-rN KHLWHhThIBDDivRing

Proof

Step Hyp Ref Expression
1 ernggrp.h-r H=LHypK
2 ernggrp.d-r D=EDRingRKW
3 ernggrplem.b-r B=BaseK
4 ernggrplem.t-r T=LTrnKW
5 ernggrplem.e-r E=TEndoKW
6 ernggrplem.p-r P=aE,bEfTafbf
7 ernggrplem.o-r O=fTIB
8 ernggrplem.i-r I=aEfTaf-1
9 erngrnglem.m-r M=aE,bEba
10 edlemk6.j-r ˙=joinK
11 edlemk6.m-r ˙=meetK
12 edlemk6.r-r R=trLKW
13 edlemk6.p-r Q=ocKW
14 edlemk6.z-r Z=Q˙Rb˙hQ˙Rbsh-1
15 edlemk6.y-r Y=Q˙Rg˙Z˙Rgb-1
16 edlemk6.x-r X=ιzT|bTbIBRbRshRbRgzQ=Y
17 edlemk6.u-r U=gTifsh=hgX
18 eqid BaseD=BaseD
19 1 4 5 2 18 erngbase-rN KHLWHBaseD=E
20 19 eqcomd KHLWHE=BaseD
21 20 adantr KHLWHhThIBE=BaseD
22 eqid D=D
23 1 4 5 2 22 erngfmul-rN KHLWHD=aE,bEba
24 9 23 eqtr4id KHLWHM=D
25 24 adantr KHLWHhThIBM=D
26 3 1 4 5 7 tendo0cl KHLWHOE
27 26 19 eleqtrrd KHLWHOBaseD
28 eqid +D=+D
29 1 4 5 2 28 erngfplus-rN KHLWH+D=aE,bEfTafbf
30 6 29 eqtr4id KHLWHP=+D
31 30 oveqd KHLWHOPO=O+DO
32 3 1 4 5 7 6 tendo0pl KHLWHOEOPO=O
33 26 32 mpdan KHLWHOPO=O
34 31 33 eqtr3d KHLWHO+DO=O
35 1 2 3 4 5 6 7 8 erngdvlem1-rN KHLWHDGrp
36 eqid 0D=0D
37 18 28 36 isgrpid2 DGrpOBaseDO+DO=O0D=O
38 35 37 syl KHLWHOBaseDO+DO=O0D=O
39 27 34 38 mpbi2and KHLWH0D=O
40 39 eqcomd KHLWHO=0D
41 40 adantr KHLWHhThIBO=0D
42 1 4 5 tendoidcl KHLWHITE
43 42 19 eleqtrrd KHLWHITBaseD
44 19 eleq2d KHLWHuBaseDuE
45 simpl KHLWHuEKHLWH
46 42 adantr KHLWHuEITE
47 simpr KHLWHuEuE
48 1 4 5 2 22 erngmul-rN KHLWHITEuEITDu=uIT
49 45 46 47 48 syl12anc KHLWHuEITDu=uIT
50 1 4 5 tendo1mulr KHLWHuEuIT=u
51 49 50 eqtrd KHLWHuEITDu=u
52 1 4 5 2 22 erngmul-rN KHLWHuEITEuDIT=ITu
53 45 47 46 52 syl12anc KHLWHuEuDIT=ITu
54 1 4 5 tendo1mul KHLWHuEITu=u
55 53 54 eqtrd KHLWHuEuDIT=u
56 51 55 jca KHLWHuEITDu=uuDIT=u
57 56 ex KHLWHuEITDu=uuDIT=u
58 44 57 sylbid KHLWHuBaseDITDu=uuDIT=u
59 58 ralrimiv KHLWHuBaseDITDu=uuDIT=u
60 1 2 3 4 5 6 7 8 9 erngdvlem3-rN KHLWHDRing
61 eqid 1D=1D
62 18 22 61 isringid DRingITBaseDuBaseDITDu=uuDIT=u1D=IT
63 60 62 syl KHLWHITBaseDuBaseDITDu=uuDIT=u1D=IT
64 43 59 63 mpbi2and KHLWH1D=IT
65 64 eqcomd KHLWHIT=1D
66 65 adantr KHLWHhThIBIT=1D
67 60 adantr KHLWHhThIBDRing
68 simp1l KHLWHhThIBsEsOtEtOKHLWH
69 24 oveqd KHLWHsMt=sDt
70 68 69 syl KHLWHhThIBsEsOtEtOsMt=sDt
71 simp2l KHLWHhThIBsEsOtEtOsE
72 simp3l KHLWHhThIBsEsOtEtOtE
73 1 4 5 2 22 erngmul-rN KHLWHsEtEsDt=ts
74 68 71 72 73 syl12anc KHLWHhThIBsEsOtEtOsDt=ts
75 70 74 eqtrd KHLWHhThIBsEsOtEtOsMt=ts
76 simp3 KHLWHhThIBsEsOtEtOtEtO
77 simp2 KHLWHhThIBsEsOtEtOsEsO
78 3 1 4 5 7 tendoconid KHLWHtEtOsEsOtsO
79 68 76 77 78 syl3anc KHLWHhThIBsEsOtEtOtsO
80 75 79 eqnetrd KHLWHhThIBsEsOtEtOsMtO
81 3 1 4 5 7 tendo1ne0 KHLWHITO
82 81 adantr KHLWHhThIBITO
83 simpll KHLWHhThIBsEsOKHLWH
84 simplrl KHLWHhThIBsEsOhT
85 simpr KHLWHhThIBsEsOsEsO
86 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml6 KHLWHhTsEsOUEUsh=h
87 86 simpld KHLWHhTsEsOUE
88 83 84 85 87 syl3anc KHLWHhThIBsEsOUE
89 24 oveqd KHLWHsMU=sDU
90 89 ad2antrr KHLWHhThIBsEsOsMU=sDU
91 simprl KHLWHhThIBsEsOsE
92 1 4 5 2 22 erngmul-rN KHLWHsEUEsDU=Us
93 83 91 88 92 syl12anc KHLWHhThIBsEsOsDU=Us
94 3 10 11 1 4 12 13 14 15 16 17 5 7 cdleml8 KHLWHhThIBsEsOUs=IT
95 94 3expa KHLWHhThIBsEsOUs=IT
96 93 95 eqtrd KHLWHhThIBsEsOsDU=IT
97 90 96 eqtrd KHLWHhThIBsEsOsMU=IT
98 21 25 41 66 67 80 82 88 97 isdrngrd KHLWHhThIBDDivRing