Metamath Proof Explorer


Theorem esumpinfval

Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypotheses esumpinfval.0 k φ
esumpinfval.1 φ A V
esumpinfval.2 φ k A B 0 +∞
esumpinfval.3 φ k A B = +∞
Assertion esumpinfval φ * k A B = +∞

Proof

Step Hyp Ref Expression
1 esumpinfval.0 k φ
2 esumpinfval.1 φ A V
3 esumpinfval.2 φ k A B 0 +∞
4 esumpinfval.3 φ k A B = +∞
5 iccssxr 0 +∞ *
6 3 ex φ k A B 0 +∞
7 1 6 ralrimi φ k A B 0 +∞
8 nfcv _ k A
9 8 esumcl A V k A B 0 +∞ * k A B 0 +∞
10 2 7 9 syl2anc φ * k A B 0 +∞
11 5 10 sseldi φ * k A B *
12 nfrab1 _ k k A | B = +∞
13 ssrab2 k A | B = +∞ A
14 13 a1i φ k A | B = +∞ A
15 0xr 0 *
16 pnfxr +∞ *
17 0lepnf 0 +∞
18 ubicc2 0 * +∞ * 0 +∞ +∞ 0 +∞
19 15 16 17 18 mp3an +∞ 0 +∞
20 19 a1i φ k A B = +∞ +∞ 0 +∞
21 0e0iccpnf 0 0 +∞
22 21 a1i φ k A ¬ B = +∞ 0 0 +∞
23 20 22 ifclda φ k A if B = +∞ +∞ 0 0 +∞
24 eldif k A k A | B = +∞ k A ¬ k k A | B = +∞
25 rabid k k A | B = +∞ k A B = +∞
26 25 simplbi2 k A B = +∞ k k A | B = +∞
27 26 con3dimp k A ¬ k k A | B = +∞ ¬ B = +∞
28 24 27 sylbi k A k A | B = +∞ ¬ B = +∞
29 28 adantl φ k A k A | B = +∞ ¬ B = +∞
30 29 iffalsed φ k A k A | B = +∞ if B = +∞ +∞ 0 = 0
31 1 12 8 14 2 23 30 esumss φ * k k A | B = +∞ if B = +∞ +∞ 0 = * k A if B = +∞ +∞ 0
32 eqidd φ k A | B = +∞ = k A | B = +∞
33 25 simprbi k k A | B = +∞ B = +∞
34 33 iftrued k k A | B = +∞ if B = +∞ +∞ 0 = +∞
35 34 adantl φ k k A | B = +∞ if B = +∞ +∞ 0 = +∞
36 1 32 35 esumeq12dvaf φ * k k A | B = +∞ if B = +∞ +∞ 0 = * k k A | B = +∞ +∞
37 2 14 ssexd φ k A | B = +∞ V
38 nfcv _ k +∞
39 12 38 esumcst k A | B = +∞ V +∞ 0 +∞ * k k A | B = +∞ +∞ = k A | B = +∞ 𝑒 +∞
40 37 19 39 sylancl φ * k k A | B = +∞ +∞ = k A | B = +∞ 𝑒 +∞
41 hashxrcl k A | B = +∞ V k A | B = +∞ *
42 37 41 syl φ k A | B = +∞ *
43 rabn0 k A | B = +∞ k A B = +∞
44 4 43 sylibr φ k A | B = +∞
45 hashgt0 k A | B = +∞ V k A | B = +∞ 0 < k A | B = +∞
46 37 44 45 syl2anc φ 0 < k A | B = +∞
47 xmulpnf1 k A | B = +∞ * 0 < k A | B = +∞ k A | B = +∞ 𝑒 +∞ = +∞
48 42 46 47 syl2anc φ k A | B = +∞ 𝑒 +∞ = +∞
49 36 40 48 3eqtrd φ * k k A | B = +∞ if B = +∞ +∞ 0 = +∞
50 31 49 eqtr3d φ * k A if B = +∞ +∞ 0 = +∞
51 breq1 +∞ = if B = +∞ +∞ 0 +∞ B if B = +∞ +∞ 0 B
52 breq1 0 = if B = +∞ +∞ 0 0 B if B = +∞ +∞ 0 B
53 pnfge +∞ * +∞ +∞
54 16 53 ax-mp +∞ +∞
55 breq2 B = +∞ +∞ B +∞ +∞
56 54 55 mpbiri B = +∞ +∞ B
57 56 adantl φ k A B = +∞ +∞ B
58 3 adantr φ k A ¬ B = +∞ B 0 +∞
59 iccgelb 0 * +∞ * B 0 +∞ 0 B
60 15 16 59 mp3an12 B 0 +∞ 0 B
61 58 60 syl φ k A ¬ B = +∞ 0 B
62 51 52 57 61 ifbothda φ k A if B = +∞ +∞ 0 B
63 1 8 2 23 3 62 esumlef φ * k A if B = +∞ +∞ 0 * k A B
64 50 63 eqbrtrrd φ +∞ * k A B
65 xgepnf * k A B * +∞ * k A B * k A B = +∞
66 65 biimpd * k A B * +∞ * k A B * k A B = +∞
67 11 64 66 sylc φ * k A B = +∞