Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumpinfval.0 | |
|
esumpinfval.1 | |
||
esumpinfval.2 | |
||
esumpinfval.3 | |
||
Assertion | esumpinfval | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumpinfval.0 | |
|
2 | esumpinfval.1 | |
|
3 | esumpinfval.2 | |
|
4 | esumpinfval.3 | |
|
5 | iccssxr | |
|
6 | 3 | ex | |
7 | 1 6 | ralrimi | |
8 | nfcv | |
|
9 | 8 | esumcl | |
10 | 2 7 9 | syl2anc | |
11 | 5 10 | sselid | |
12 | nfrab1 | |
|
13 | ssrab2 | |
|
14 | 13 | a1i | |
15 | 0xr | |
|
16 | pnfxr | |
|
17 | 0lepnf | |
|
18 | ubicc2 | |
|
19 | 15 16 17 18 | mp3an | |
20 | 19 | a1i | |
21 | 0e0iccpnf | |
|
22 | 21 | a1i | |
23 | 20 22 | ifclda | |
24 | eldif | |
|
25 | rabid | |
|
26 | 25 | simplbi2 | |
27 | 26 | con3dimp | |
28 | 24 27 | sylbi | |
29 | 28 | adantl | |
30 | 29 | iffalsed | |
31 | 1 12 8 14 2 23 30 | esumss | |
32 | eqidd | |
|
33 | 25 | simprbi | |
34 | 33 | iftrued | |
35 | 34 | adantl | |
36 | 1 32 35 | esumeq12dvaf | |
37 | 2 14 | ssexd | |
38 | nfcv | |
|
39 | 12 38 | esumcst | |
40 | 37 19 39 | sylancl | |
41 | hashxrcl | |
|
42 | 37 41 | syl | |
43 | rabn0 | |
|
44 | 4 43 | sylibr | |
45 | hashgt0 | |
|
46 | 37 44 45 | syl2anc | |
47 | xmulpnf1 | |
|
48 | 42 46 47 | syl2anc | |
49 | 36 40 48 | 3eqtrd | |
50 | 31 49 | eqtr3d | |
51 | breq1 | |
|
52 | breq1 | |
|
53 | pnfge | |
|
54 | 16 53 | ax-mp | |
55 | breq2 | |
|
56 | 54 55 | mpbiri | |
57 | 56 | adantl | |
58 | 3 | adantr | |
59 | iccgelb | |
|
60 | 15 16 59 | mp3an12 | |
61 | 58 60 | syl | |
62 | 51 52 57 61 | ifbothda | |
63 | 1 8 2 23 3 62 | esumlef | |
64 | 50 63 | eqbrtrrd | |
65 | xgepnf | |
|
66 | 65 | biimpd | |
67 | 11 64 66 | sylc | |