Metamath Proof Explorer


Theorem esumpinfval

Description: The value of the extended sum of nonnegative terms, with at least one infinite term. (Contributed by Thierry Arnoux, 19-Jun-2017)

Ref Expression
Hypotheses esumpinfval.0 kφ
esumpinfval.1 φAV
esumpinfval.2 φkAB0+∞
esumpinfval.3 φkAB=+∞
Assertion esumpinfval φ*kAB=+∞

Proof

Step Hyp Ref Expression
1 esumpinfval.0 kφ
2 esumpinfval.1 φAV
3 esumpinfval.2 φkAB0+∞
4 esumpinfval.3 φkAB=+∞
5 iccssxr 0+∞*
6 3 ex φkAB0+∞
7 1 6 ralrimi φkAB0+∞
8 nfcv _kA
9 8 esumcl AVkAB0+∞*kAB0+∞
10 2 7 9 syl2anc φ*kAB0+∞
11 5 10 sselid φ*kAB*
12 nfrab1 _kkA|B=+∞
13 ssrab2 kA|B=+∞A
14 13 a1i φkA|B=+∞A
15 0xr 0*
16 pnfxr +∞*
17 0lepnf 0+∞
18 ubicc2 0*+∞*0+∞+∞0+∞
19 15 16 17 18 mp3an +∞0+∞
20 19 a1i φkAB=+∞+∞0+∞
21 0e0iccpnf 00+∞
22 21 a1i φkA¬B=+∞00+∞
23 20 22 ifclda φkAifB=+∞+∞00+∞
24 eldif kAkA|B=+∞kA¬kkA|B=+∞
25 rabid kkA|B=+∞kAB=+∞
26 25 simplbi2 kAB=+∞kkA|B=+∞
27 26 con3dimp kA¬kkA|B=+∞¬B=+∞
28 24 27 sylbi kAkA|B=+∞¬B=+∞
29 28 adantl φkAkA|B=+∞¬B=+∞
30 29 iffalsed φkAkA|B=+∞ifB=+∞+∞0=0
31 1 12 8 14 2 23 30 esumss φ*kkA|B=+∞ifB=+∞+∞0=*kAifB=+∞+∞0
32 eqidd φkA|B=+∞=kA|B=+∞
33 25 simprbi kkA|B=+∞B=+∞
34 33 iftrued kkA|B=+∞ifB=+∞+∞0=+∞
35 34 adantl φkkA|B=+∞ifB=+∞+∞0=+∞
36 1 32 35 esumeq12dvaf φ*kkA|B=+∞ifB=+∞+∞0=*kkA|B=+∞+∞
37 2 14 ssexd φkA|B=+∞V
38 nfcv _k+∞
39 12 38 esumcst kA|B=+∞V+∞0+∞*kkA|B=+∞+∞=kA|B=+∞𝑒+∞
40 37 19 39 sylancl φ*kkA|B=+∞+∞=kA|B=+∞𝑒+∞
41 hashxrcl kA|B=+∞VkA|B=+∞*
42 37 41 syl φkA|B=+∞*
43 rabn0 kA|B=+∞kAB=+∞
44 4 43 sylibr φkA|B=+∞
45 hashgt0 kA|B=+∞VkA|B=+∞0<kA|B=+∞
46 37 44 45 syl2anc φ0<kA|B=+∞
47 xmulpnf1 kA|B=+∞*0<kA|B=+∞kA|B=+∞𝑒+∞=+∞
48 42 46 47 syl2anc φkA|B=+∞𝑒+∞=+∞
49 36 40 48 3eqtrd φ*kkA|B=+∞ifB=+∞+∞0=+∞
50 31 49 eqtr3d φ*kAifB=+∞+∞0=+∞
51 breq1 +∞=ifB=+∞+∞0+∞BifB=+∞+∞0B
52 breq1 0=ifB=+∞+∞00BifB=+∞+∞0B
53 pnfge +∞*+∞+∞
54 16 53 ax-mp +∞+∞
55 breq2 B=+∞+∞B+∞+∞
56 54 55 mpbiri B=+∞+∞B
57 56 adantl φkAB=+∞+∞B
58 3 adantr φkA¬B=+∞B0+∞
59 iccgelb 0*+∞*B0+∞0B
60 15 16 59 mp3an12 B0+∞0B
61 58 60 syl φkA¬B=+∞0B
62 51 52 57 61 ifbothda φkAifB=+∞+∞0B
63 1 8 2 23 3 62 esumlef φ*kAifB=+∞+∞0*kAB
64 50 63 eqbrtrrd φ+∞*kAB
65 xgepnf *kAB*+∞*kAB*kAB=+∞
66 65 biimpd *kAB*+∞*kAB*kAB=+∞
67 11 64 66 sylc φ*kAB=+∞