Metamath Proof Explorer


Theorem etransclem33

Description: F is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem33.s φS
etransclem33.x φXTopOpenfld𝑡S
etransclem33.p φP
etransclem33.m φM0
etransclem33.f F=xXxP1j=1MxjP
etransclem33.n φN0
Assertion etransclem33 φSDnFN:X

Proof

Step Hyp Ref Expression
1 etransclem33.s φS
2 etransclem33.x φXTopOpenfld𝑡S
3 etransclem33.p φP
4 etransclem33.m φM0
5 etransclem33.f F=xXxP1j=1MxjP
6 etransclem33.n φN0
7 eqidd φm0d0m0M|k=0Mdk=m=m0d0m0M|k=0Mdk=m
8 oveq2 m=N0m=0N
9 8 oveq1d m=N0m0M=0N0M
10 eqeq2 m=Nk=0Mdk=mk=0Mdk=N
11 9 10 rabeqbidv m=Nd0m0M|k=0Mdk=m=d0N0M|k=0Mdk=N
12 11 adantl φm=Nd0m0M|k=0Mdk=m=d0N0M|k=0Mdk=N
13 ovex 0N0MV
14 13 rabex d0N0M|k=0Mdk=NV
15 14 a1i φd0N0M|k=0Mdk=NV
16 7 12 6 15 fvmptd φm0d0m0M|k=0Mdk=mN=d0N0M|k=0Mdk=N
17 fzfi 0NFin
18 fzfi 0MFin
19 mapfi 0NFin0MFin0N0MFin
20 17 18 19 mp2an 0N0MFin
21 ssrab2 d0N0M|k=0Mdk=N0N0M
22 ssfi 0N0MFind0N0M|k=0Mdk=N0N0Md0N0M|k=0Mdk=NFin
23 20 21 22 mp2an d0N0M|k=0Mdk=NFin
24 16 23 eqeltrdi φm0d0m0M|k=0Mdk=mNFin
25 24 adantr φxXm0d0m0M|k=0Mdk=mNFin
26 6 faccld φN!
27 26 nncnd φN!
28 27 ad2antrr φxXcm0d0m0M|k=0Mdk=mNN!
29 18 a1i φxXcm0d0m0M|k=0Mdk=mN0MFin
30 simpr φcm0d0m0M|k=0Mdk=mNcm0d0m0M|k=0Mdk=mN
31 16 adantr φcm0d0m0M|k=0Mdk=mNm0d0m0M|k=0Mdk=mN=d0N0M|k=0Mdk=N
32 30 31 eleqtrd φcm0d0m0M|k=0Mdk=mNcd0N0M|k=0Mdk=N
33 21 32 sselid φcm0d0m0M|k=0Mdk=mNc0N0M
34 elmapi c0N0Mc:0M0N
35 33 34 syl φcm0d0m0M|k=0Mdk=mNc:0M0N
36 35 ffvelcdmda φcm0d0m0M|k=0Mdk=mNj0Mcj0N
37 36 adantllr φxXcm0d0m0M|k=0Mdk=mNj0Mcj0N
38 elfznn0 cj0Ncj0
39 37 38 syl φxXcm0d0m0M|k=0Mdk=mNj0Mcj0
40 39 faccld φxXcm0d0m0M|k=0Mdk=mNj0Mcj!
41 40 nncnd φxXcm0d0m0M|k=0Mdk=mNj0Mcj!
42 29 41 fprodcl φxXcm0d0m0M|k=0Mdk=mNj=0Mcj!
43 40 nnne0d φxXcm0d0m0M|k=0Mdk=mNj0Mcj!0
44 29 41 43 fprodn0 φxXcm0d0m0M|k=0Mdk=mNj=0Mcj!0
45 28 42 44 divcld φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!
46 1 ad3antrrr φxXcm0d0m0M|k=0Mdk=mNj0MS
47 2 ad3antrrr φxXcm0d0m0M|k=0Mdk=mNj0MXTopOpenfld𝑡S
48 3 ad3antrrr φxXcm0d0m0M|k=0Mdk=mNj0MP
49 etransclem5 k0MyXykifk=0P1P=w0MzXzwifw=0P1P
50 simpr φxXcm0d0m0M|k=0Mdk=mNj0Mj0M
51 46 47 48 49 50 39 etransclem20 φxXcm0d0m0M|k=0Mdk=mNj0MSDnk0MyXykifk=0P1Pjcj:X
52 simpllr φxXcm0d0m0M|k=0Mdk=mNj0MxX
53 51 52 ffvelcdmd φxXcm0d0m0M|k=0Mdk=mNj0MSDnk0MyXykifk=0P1Pjcjx
54 29 53 fprodcl φxXcm0d0m0M|k=0Mdk=mNj=0MSDnk0MyXykifk=0P1Pjcjx
55 45 54 mulcld φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx
56 25 55 fsumcl φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx
57 eqid xXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx=xXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx
58 56 57 fmptd φxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx:X
59 etransclem5 k0MyXykifk=0P1P=j0MxXxjifj=0P1P
60 etransclem11 m0d0m0M|k=0Mdk=m=n0c0n0M|j=0Mcj=n
61 1 2 3 4 5 6 59 60 etransclem30 φSDnFN=xXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx
62 61 feq1d φSDnFN:XxXcm0d0m0M|k=0Mdk=mNN!j=0Mcj!j=0MSDnk0MyXykifk=0P1Pjcjx:X
63 58 62 mpbird φSDnFN:X