Metamath Proof Explorer


Theorem fclscf

Description: Characterization of fineness of topologies in terms of cluster points. (Contributed by Jeff Hankins, 12-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Assertion fclscf JTopOnXKTopOnXJKfFilXKfClusfJfClusf

Proof

Step Hyp Ref Expression
1 simpll JTopOnXKTopOnXJKxKfClusfJTopOnX
2 simplr JTopOnXKTopOnXJKxKfClusfKTopOnX
3 fclstopon xKfClusfKTopOnXfFilX
4 3 ad2antll JTopOnXKTopOnXJKxKfClusfKTopOnXfFilX
5 2 4 mpbid JTopOnXKTopOnXJKxKfClusffFilX
6 simprl JTopOnXKTopOnXJKxKfClusfJK
7 fclsss1 JTopOnXfFilXJKKfClusfJfClusf
8 1 5 6 7 syl3anc JTopOnXKTopOnXJKxKfClusfKfClusfJfClusf
9 simprr JTopOnXKTopOnXJKxKfClusfxKfClusf
10 8 9 sseldd JTopOnXKTopOnXJKxKfClusfxJfClusf
11 10 expr JTopOnXKTopOnXJKxKfClusfxJfClusf
12 11 ssrdv JTopOnXKTopOnXJKKfClusfJfClusf
13 12 ralrimivw JTopOnXKTopOnXJKfFilXKfClusfJfClusf
14 simpllr JTopOnXKTopOnXfFilXKfClusfJfClusfxJKTopOnX
15 toponmax KTopOnXXK
16 ssid XX
17 eleq2 u=XyuyX
18 sseq1 u=XuXXX
19 17 18 anbi12d u=XyuuXyXXX
20 19 rspcev XKyXXXuKyuuX
21 16 20 mpanr2 XKyXuKyuuX
22 21 ex XKyXuKyuuX
23 14 15 22 3syl JTopOnXKTopOnXfFilXKfClusfJfClusfxJyXuKyuuX
24 eleq2 x=XyxyX
25 sseq2 x=XuxuX
26 25 anbi2d x=XyuuxyuuX
27 26 rexbidv x=XuKyuuxuKyuuX
28 24 27 imbi12d x=XyxuKyuuxyXuKyuuX
29 23 28 syl5ibrcom JTopOnXKTopOnXfFilXKfClusfJfClusfxJx=XyxuKyuux
30 simplll JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxJTopOnX
31 simprl JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxxJ
32 simprrr JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxyx
33 supnfcls JTopOnXxJyx¬yJfClusy𝒫X|Xxy
34 30 31 32 33 syl3anc JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyx¬yJfClusy𝒫X|Xxy
35 toponss JTopOnXxJxX
36 30 31 35 syl2anc JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxxX
37 36 32 sseldd JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxyX
38 simpllr JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxKTopOnX
39 toponmax JTopOnXXJ
40 30 39 syl JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxXJ
41 difssd JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxXxX
42 simprrl JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxxX
43 pssdifn0 xXxXXx
44 36 42 43 syl2anc JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxXx
45 supfil XJXxXXxy𝒫X|XxyFilX
46 40 41 44 45 syl3anc JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxy𝒫X|XxyFilX
47 fclsopn KTopOnXy𝒫X|XxyFilXyKfClusy𝒫X|XxyyXuKyuny𝒫X|Xxyun
48 38 46 47 syl2anc JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxyKfClusy𝒫X|XxyyXuKyuny𝒫X|Xxyun
49 37 48 mpbirand JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxyKfClusy𝒫X|XxyuKyuny𝒫X|Xxyun
50 oveq2 f=y𝒫X|XxyKfClusf=KfClusy𝒫X|Xxy
51 oveq2 f=y𝒫X|XxyJfClusf=JfClusy𝒫X|Xxy
52 50 51 sseq12d f=y𝒫X|XxyKfClusfJfClusfKfClusy𝒫X|XxyJfClusy𝒫X|Xxy
53 simplr JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxfFilXKfClusfJfClusf
54 52 53 46 rspcdva JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxKfClusy𝒫X|XxyJfClusy𝒫X|Xxy
55 54 sseld JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxyKfClusy𝒫X|XxyyJfClusy𝒫X|Xxy
56 49 55 sylbird JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyuny𝒫X|XxyunyJfClusy𝒫X|Xxy
57 34 56 mtod JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyx¬uKyuny𝒫X|Xxyun
58 rexanali uKyu¬ny𝒫X|Xxyun¬uKyuny𝒫X|Xxyun
59 rexnal ny𝒫X|Xxy¬un¬ny𝒫X|Xxyun
60 sseq2 y=nXxyXxn
61 60 elrab ny𝒫X|Xxyn𝒫XXxn
62 sslin XxnuXxun
63 61 62 simplbiim ny𝒫X|XxyuXxun
64 ssn0 uXxunuXxun
65 64 ex uXxunuXxun
66 65 necon1bd uXxun¬unuXx=
67 inssdif0 uXxuXx=
68 66 67 syl6ibr uXxun¬unuXx
69 toponss KTopOnXuKuX
70 38 69 sylan JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKuX
71 df-ss uXuX=u
72 70 71 sylib JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKuX=u
73 72 sseq1d JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKuXxux
74 73 biimpd JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKuXxux
75 68 74 syl9r JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKuXxun¬unux
76 63 75 syl5 JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKny𝒫X|Xxy¬unux
77 76 rexlimdv JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKny𝒫X|Xxy¬unux
78 59 77 biimtrrid JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuK¬ny𝒫X|Xxyunux
79 78 anim2d JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyu¬ny𝒫X|Xxyunyuux
80 79 reximdva JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyu¬ny𝒫X|XxyunuKyuux
81 58 80 biimtrrid JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyx¬uKyuny𝒫X|XxyunuKyuux
82 57 81 mpd JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyuux
83 82 anassrs JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyuux
84 83 exp32 JTopOnXKTopOnXfFilXKfClusfJfClusfxJxXyxuKyuux
85 29 84 pm2.61dne JTopOnXKTopOnXfFilXKfClusfJfClusfxJyxuKyuux
86 85 ralrimiv JTopOnXKTopOnXfFilXKfClusfJfClusfxJyxuKyuux
87 topontop KTopOnXKTop
88 eltop2 KTopxKyxuKyuux
89 14 87 88 3syl JTopOnXKTopOnXfFilXKfClusfJfClusfxJxKyxuKyuux
90 86 89 mpbird JTopOnXKTopOnXfFilXKfClusfJfClusfxJxK
91 90 ex JTopOnXKTopOnXfFilXKfClusfJfClusfxJxK
92 91 ssrdv JTopOnXKTopOnXfFilXKfClusfJfClusfJK
93 13 92 impbida JTopOnXKTopOnXJKfFilXKfClusfJfClusf