Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for ML
Cartesian exponentiation
finxpreclem4
Next ⟩
finxpreclem5
Metamath Proof Explorer
Ascii
Unicode
Theorem
finxpreclem4
Description:
Lemma for
^^
recursion theorems.
(Contributed by
ML
, 23-Oct-2020)
Ref
Expression
Hypothesis
finxpreclem4.1
ω
⊢
F
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
x
n
x
Assertion
finxpreclem4
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
N
=
rec
F
⋃
N
1
st
y
⋃
N
Proof
Step
Hyp
Ref
Expression
1
finxpreclem4.1
ω
⊢
F
=
n
∈
ω
,
x
∈
V
⟼
if
n
=
1
𝑜
∧
x
∈
U
∅
if
x
∈
V
×
U
⋃
n
1
st
x
n
x
2
2onn
ω
⊢
2
𝑜
∈
ω
3
nnon
ω
⊢
N
∈
ω
→
N
∈
On
4
2on
⊢
2
𝑜
∈
On
5
oawordeu
⊢
2
𝑜
∈
On
∧
N
∈
On
∧
2
𝑜
⊆
N
→
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
6
4
5
mpanl1
⊢
N
∈
On
∧
2
𝑜
⊆
N
→
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
7
riotasbc
ι
⊢
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
→
[
˙
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
]
˙
2
𝑜
+
𝑜
o
=
N
8
6
7
syl
ι
⊢
N
∈
On
∧
2
𝑜
⊆
N
→
[
˙
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
]
˙
2
𝑜
+
𝑜
o
=
N
9
riotaex
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
V
10
sbceq1g
ι
ι
⦋
ι
⦌
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
V
→
[
˙
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
]
˙
2
𝑜
+
𝑜
o
=
N
↔
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
N
11
9
10
ax-mp
ι
⦋
ι
⦌
⊢
[
˙
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
]
˙
2
𝑜
+
𝑜
o
=
N
↔
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
N
12
csbov2g
ι
⦋
ι
⦌
⦋
ι
⦌
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
V
→
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
2
𝑜
+
𝑜
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
o
13
9
12
ax-mp
⦋
ι
⦌
⦋
ι
⦌
⊢
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
2
𝑜
+
𝑜
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
o
14
9
csbvargi
⦋
ι
⦌
ι
⊢
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
o
=
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
15
14
oveq2i
⦋
ι
⦌
ι
⊢
2
𝑜
+
𝑜
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
o
=
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
16
13
15
eqtri
⦋
ι
⦌
ι
⊢
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
17
16
eqeq1i
⦋
ι
⦌
ι
⊢
⦋
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
⦌
2
𝑜
+
𝑜
o
=
N
↔
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
N
18
11
17
bitri
ι
ι
⊢
[
˙
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
/
o
]
˙
2
𝑜
+
𝑜
o
=
N
↔
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
N
19
8
18
sylib
ι
⊢
N
∈
On
∧
2
𝑜
⊆
N
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
N
20
3
19
sylan
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
N
21
simpl
ω
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
N
∈
ω
22
20
21
eqeltrd
ω
ι
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
23
riotacl
ι
⊢
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
24
riotaund
ι
⊢
¬
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
∅
25
0elon
⊢
∅
∈
On
26
24
25
eqeltrdi
ι
⊢
¬
∃!
o
∈
On
2
𝑜
+
𝑜
o
=
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
27
23
26
pm2.61i
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
28
nnarcl
ι
ι
ω
ω
ι
ω
⊢
2
𝑜
∈
On
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
↔
2
𝑜
∈
ω
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
29
4
28
mpan
ι
ι
ω
ω
ι
ω
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
↔
2
𝑜
∈
ω
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
30
2
biantrur
ι
ω
ω
ι
ω
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
↔
2
𝑜
∈
ω
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
31
29
30
bitr4di
ι
ι
ω
ι
ω
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
On
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
↔
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
32
27
31
ax-mp
ι
ω
ι
ω
⊢
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
↔
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
33
22
32
sylib
ω
ι
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
34
nnacom
ω
ι
ω
ι
ι
⊢
2
𝑜
∈
ω
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
2
𝑜
35
2
33
34
sylancr
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
2
𝑜
36
df-2o
⊢
2
𝑜
=
suc
1
𝑜
37
36
oveq2i
ι
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
2
𝑜
=
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
suc
1
𝑜
38
1onn
ω
⊢
1
𝑜
∈
ω
39
nnasuc
ι
ω
ω
ι
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
∧
1
𝑜
∈
ω
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
suc
1
𝑜
=
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
40
33
38
39
sylancl
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
suc
1
𝑜
=
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
41
37
40
eqtrid
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
2
𝑜
=
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
42
35
20
41
3eqtr3d
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
N
=
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
43
3
adantr
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
N
∈
On
44
sucidg
ω
⊢
1
𝑜
∈
ω
→
1
𝑜
∈
suc
1
𝑜
45
38
44
ax-mp
⊢
1
𝑜
∈
suc
1
𝑜
46
45
36
eleqtrri
⊢
1
𝑜
∈
2
𝑜
47
ssel
⊢
2
𝑜
⊆
N
→
1
𝑜
∈
2
𝑜
→
1
𝑜
∈
N
48
46
47
mpi
⊢
2
𝑜
⊆
N
→
1
𝑜
∈
N
49
48
ne0d
⊢
2
𝑜
⊆
N
→
N
≠
∅
50
49
adantl
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
N
≠
∅
51
nnlim
ω
⊢
N
∈
ω
→
¬
Lim
N
52
51
adantr
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
¬
Lim
N
53
onsucuni3
⊢
N
∈
On
∧
N
≠
∅
∧
¬
Lim
N
→
N
=
suc
⋃
N
54
43
50
52
53
syl3anc
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
N
=
suc
⋃
N
55
nnacom
ι
ω
ω
ι
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
∧
1
𝑜
∈
ω
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
56
33
38
55
sylancl
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
57
suceq
ι
ι
ι
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
→
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
=
suc
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
58
56
57
syl
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
suc
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
+
𝑜
1
𝑜
=
suc
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
59
42
54
58
3eqtr3d
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
suc
⋃
N
=
suc
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
60
ordom
ω
⊢
Ord
ω
61
ordelss
ω
ω
ω
⊢
Ord
ω
∧
N
∈
ω
→
N
⊆
ω
62
60
61
mpan
ω
ω
⊢
N
∈
ω
→
N
⊆
ω
63
nnfi
ω
⊢
N
∈
ω
→
N
∈
Fin
64
nnunifi
ω
ω
⊢
N
⊆
ω
∧
N
∈
Fin
→
⋃
N
∈
ω
65
62
63
64
syl2anc
ω
ω
⊢
N
∈
ω
→
⋃
N
∈
ω
66
65
adantr
ω
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
⋃
N
∈
ω
67
nnacl
ω
ι
ω
ι
ω
⊢
1
𝑜
∈
ω
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
→
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
68
38
33
67
sylancr
ω
ι
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
69
peano4
ω
ι
ω
ι
ι
⊢
⋃
N
∈
ω
∧
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
→
suc
⋃
N
=
suc
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
↔
⋃
N
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
70
66
68
69
syl2anc
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
suc
⋃
N
=
suc
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
↔
⋃
N
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
71
59
70
mpbid
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
⋃
N
=
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
72
71
fveq2d
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
rec
F
⋃
N
1
st
y
⋃
N
=
rec
F
⋃
N
1
st
y
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
73
72
adantr
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
⋃
N
1
st
y
⋃
N
=
rec
F
⋃
N
1
st
y
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
74
33
adantr
ω
ι
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
75
df-1o
⊢
1
𝑜
=
suc
∅
76
75
fveq2i
⊢
rec
F
N
y
1
𝑜
=
rec
F
N
y
suc
∅
77
rdgsuc
⊢
∅
∈
On
→
rec
F
N
y
suc
∅
=
F
rec
F
N
y
∅
78
25
77
ax-mp
⊢
rec
F
N
y
suc
∅
=
F
rec
F
N
y
∅
79
opex
⊢
N
y
∈
V
80
79
rdg0
⊢
rec
F
N
y
∅
=
N
y
81
80
fveq2i
⊢
F
rec
F
N
y
∅
=
F
N
y
82
76
78
81
3eqtri
⊢
rec
F
N
y
1
𝑜
=
F
N
y
83
1
finxpreclem3
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
⋃
N
1
st
y
=
F
N
y
84
82
83
eqtr4id
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
1
𝑜
=
⋃
N
1
st
y
85
84
fveq2d
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
F
rec
F
N
y
1
𝑜
=
F
⋃
N
1
st
y
86
2on0
⊢
2
𝑜
≠
∅
87
nnlim
ω
⊢
2
𝑜
∈
ω
→
¬
Lim
2
𝑜
88
2
87
ax-mp
⊢
¬
Lim
2
𝑜
89
rdgsucuni
⊢
2
𝑜
∈
On
∧
2
𝑜
≠
∅
∧
¬
Lim
2
𝑜
→
rec
F
N
y
2
𝑜
=
F
rec
F
N
y
⋃
2
𝑜
90
4
86
88
89
mp3an
⊢
rec
F
N
y
2
𝑜
=
F
rec
F
N
y
⋃
2
𝑜
91
1oequni2o
⊢
1
𝑜
=
⋃
2
𝑜
92
91
fveq2i
⊢
rec
F
N
y
1
𝑜
=
rec
F
N
y
⋃
2
𝑜
93
92
fveq2i
⊢
F
rec
F
N
y
1
𝑜
=
F
rec
F
N
y
⋃
2
𝑜
94
90
93
eqtr4i
⊢
rec
F
N
y
2
𝑜
=
F
rec
F
N
y
1
𝑜
95
75
fveq2i
⊢
rec
F
⋃
N
1
st
y
1
𝑜
=
rec
F
⋃
N
1
st
y
suc
∅
96
rdgsuc
⊢
∅
∈
On
→
rec
F
⋃
N
1
st
y
suc
∅
=
F
rec
F
⋃
N
1
st
y
∅
97
25
96
ax-mp
⊢
rec
F
⋃
N
1
st
y
suc
∅
=
F
rec
F
⋃
N
1
st
y
∅
98
opex
⊢
⋃
N
1
st
y
∈
V
99
98
rdg0
⊢
rec
F
⋃
N
1
st
y
∅
=
⋃
N
1
st
y
100
99
fveq2i
⊢
F
rec
F
⋃
N
1
st
y
∅
=
F
⋃
N
1
st
y
101
95
97
100
3eqtri
⊢
rec
F
⋃
N
1
st
y
1
𝑜
=
F
⋃
N
1
st
y
102
85
94
101
3eqtr4g
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
2
𝑜
=
rec
F
⋃
N
1
st
y
1
𝑜
103
1on
⊢
1
𝑜
∈
On
104
rdgeqoa
ι
ω
ι
ι
⊢
2
𝑜
∈
On
∧
1
𝑜
∈
On
∧
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
→
rec
F
N
y
2
𝑜
=
rec
F
⋃
N
1
st
y
1
𝑜
→
rec
F
N
y
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
rec
F
⋃
N
1
st
y
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
105
4
103
104
mp3an12
ι
ω
ι
ι
⊢
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
∈
ω
→
rec
F
N
y
2
𝑜
=
rec
F
⋃
N
1
st
y
1
𝑜
→
rec
F
N
y
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
rec
F
⋃
N
1
st
y
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
106
74
102
105
sylc
ω
ι
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
rec
F
⋃
N
1
st
y
1
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
107
20
fveq2d
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
→
rec
F
N
y
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
rec
F
N
y
N
108
107
adantr
ω
ι
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
2
𝑜
+
𝑜
ι
o
∈
On
|
2
𝑜
+
𝑜
o
=
N
=
rec
F
N
y
N
109
73
106
108
3eqtr2rd
ω
⊢
N
∈
ω
∧
2
𝑜
⊆
N
∧
y
∈
V
×
U
→
rec
F
N
y
N
=
rec
F
⋃
N
1
st
y
⋃
N