Metamath Proof Explorer


Theorem finxpreclem4

Description: Lemma for ^^ recursion theorems. (Contributed by ML, 23-Oct-2020)

Ref Expression
Hypothesis finxpreclem4.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
Assertion finxpreclem4 Nω2𝑜NyV×UrecFNyN=recFN1styN

Proof

Step Hyp Ref Expression
1 finxpreclem4.1 F=nω,xVifn=1𝑜xUifxV×Un1stxnx
2 2onn 2𝑜ω
3 nnon NωNOn
4 2on 2𝑜On
5 oawordeu 2𝑜OnNOn2𝑜N∃!oOn2𝑜+𝑜o=N
6 4 5 mpanl1 NOn2𝑜N∃!oOn2𝑜+𝑜o=N
7 riotasbc ∃!oOn2𝑜+𝑜o=N[˙ιoOn|2𝑜+𝑜o=N/o]˙2𝑜+𝑜o=N
8 6 7 syl NOn2𝑜N[˙ιoOn|2𝑜+𝑜o=N/o]˙2𝑜+𝑜o=N
9 riotaex ιoOn|2𝑜+𝑜o=NV
10 sbceq1g ιoOn|2𝑜+𝑜o=NV[˙ιoOn|2𝑜+𝑜o=N/o]˙2𝑜+𝑜o=NιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=N
11 9 10 ax-mp [˙ιoOn|2𝑜+𝑜o=N/o]˙2𝑜+𝑜o=NιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=N
12 csbov2g ιoOn|2𝑜+𝑜o=NVιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=2𝑜+𝑜ιoOn|2𝑜+𝑜o=N/oo
13 9 12 ax-mp ιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=2𝑜+𝑜ιoOn|2𝑜+𝑜o=N/oo
14 9 csbvargi ιoOn|2𝑜+𝑜o=N/oo=ιoOn|2𝑜+𝑜o=N
15 14 oveq2i 2𝑜+𝑜ιoOn|2𝑜+𝑜o=N/oo=2𝑜+𝑜ιoOn|2𝑜+𝑜o=N
16 13 15 eqtri ιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=2𝑜+𝑜ιoOn|2𝑜+𝑜o=N
17 16 eqeq1i ιoOn|2𝑜+𝑜o=N/o2𝑜+𝑜o=N2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=N
18 11 17 bitri [˙ιoOn|2𝑜+𝑜o=N/o]˙2𝑜+𝑜o=N2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=N
19 8 18 sylib NOn2𝑜N2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=N
20 3 19 sylan Nω2𝑜N2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=N
21 simpl Nω2𝑜NNω
22 20 21 eqeltrd Nω2𝑜N2𝑜+𝑜ιoOn|2𝑜+𝑜o=Nω
23 riotacl ∃!oOn2𝑜+𝑜o=NιoOn|2𝑜+𝑜o=NOn
24 riotaund ¬∃!oOn2𝑜+𝑜o=NιoOn|2𝑜+𝑜o=N=
25 0elon On
26 24 25 eqeltrdi ¬∃!oOn2𝑜+𝑜o=NιoOn|2𝑜+𝑜o=NOn
27 23 26 pm2.61i ιoOn|2𝑜+𝑜o=NOn
28 nnarcl 2𝑜OnιoOn|2𝑜+𝑜o=NOn2𝑜+𝑜ιoOn|2𝑜+𝑜o=Nω2𝑜ωιoOn|2𝑜+𝑜o=Nω
29 4 28 mpan ιoOn|2𝑜+𝑜o=NOn2𝑜+𝑜ιoOn|2𝑜+𝑜o=Nω2𝑜ωιoOn|2𝑜+𝑜o=Nω
30 2 biantrur ιoOn|2𝑜+𝑜o=Nω2𝑜ωιoOn|2𝑜+𝑜o=Nω
31 29 30 bitr4di ιoOn|2𝑜+𝑜o=NOn2𝑜+𝑜ιoOn|2𝑜+𝑜o=NωιoOn|2𝑜+𝑜o=Nω
32 27 31 ax-mp 2𝑜+𝑜ιoOn|2𝑜+𝑜o=NωιoOn|2𝑜+𝑜o=Nω
33 22 32 sylib Nω2𝑜NιoOn|2𝑜+𝑜o=Nω
34 nnacom 2𝑜ωιoOn|2𝑜+𝑜o=Nω2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=ιoOn|2𝑜+𝑜o=N+𝑜2𝑜
35 2 33 34 sylancr Nω2𝑜N2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=ιoOn|2𝑜+𝑜o=N+𝑜2𝑜
36 df-2o 2𝑜=suc1𝑜
37 36 oveq2i ιoOn|2𝑜+𝑜o=N+𝑜2𝑜=ιoOn|2𝑜+𝑜o=N+𝑜suc1𝑜
38 1onn 1𝑜ω
39 nnasuc ιoOn|2𝑜+𝑜o=Nω1𝑜ωιoOn|2𝑜+𝑜o=N+𝑜suc1𝑜=sucιoOn|2𝑜+𝑜o=N+𝑜1𝑜
40 33 38 39 sylancl Nω2𝑜NιoOn|2𝑜+𝑜o=N+𝑜suc1𝑜=sucιoOn|2𝑜+𝑜o=N+𝑜1𝑜
41 37 40 eqtrid Nω2𝑜NιoOn|2𝑜+𝑜o=N+𝑜2𝑜=sucιoOn|2𝑜+𝑜o=N+𝑜1𝑜
42 35 20 41 3eqtr3d Nω2𝑜NN=sucιoOn|2𝑜+𝑜o=N+𝑜1𝑜
43 3 adantr Nω2𝑜NNOn
44 sucidg 1𝑜ω1𝑜suc1𝑜
45 38 44 ax-mp 1𝑜suc1𝑜
46 45 36 eleqtrri 1𝑜2𝑜
47 ssel 2𝑜N1𝑜2𝑜1𝑜N
48 46 47 mpi 2𝑜N1𝑜N
49 48 ne0d 2𝑜NN
50 49 adantl Nω2𝑜NN
51 nnlim Nω¬LimN
52 51 adantr Nω2𝑜N¬LimN
53 onsucuni3 NOnN¬LimNN=sucN
54 43 50 52 53 syl3anc Nω2𝑜NN=sucN
55 nnacom ιoOn|2𝑜+𝑜o=Nω1𝑜ωιoOn|2𝑜+𝑜o=N+𝑜1𝑜=1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
56 33 38 55 sylancl Nω2𝑜NιoOn|2𝑜+𝑜o=N+𝑜1𝑜=1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
57 suceq ιoOn|2𝑜+𝑜o=N+𝑜1𝑜=1𝑜+𝑜ιoOn|2𝑜+𝑜o=NsucιoOn|2𝑜+𝑜o=N+𝑜1𝑜=suc1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
58 56 57 syl Nω2𝑜NsucιoOn|2𝑜+𝑜o=N+𝑜1𝑜=suc1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
59 42 54 58 3eqtr3d Nω2𝑜NsucN=suc1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
60 ordom Ordω
61 ordelss OrdωNωNω
62 60 61 mpan NωNω
63 nnfi NωNFin
64 nnunifi NωNFinNω
65 62 63 64 syl2anc NωNω
66 65 adantr Nω2𝑜NNω
67 nnacl 1𝑜ωιoOn|2𝑜+𝑜o=Nω1𝑜+𝑜ιoOn|2𝑜+𝑜o=Nω
68 38 33 67 sylancr Nω2𝑜N1𝑜+𝑜ιoOn|2𝑜+𝑜o=Nω
69 peano4 Nω1𝑜+𝑜ιoOn|2𝑜+𝑜o=NωsucN=suc1𝑜+𝑜ιoOn|2𝑜+𝑜o=NN=1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
70 66 68 69 syl2anc Nω2𝑜NsucN=suc1𝑜+𝑜ιoOn|2𝑜+𝑜o=NN=1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
71 59 70 mpbid Nω2𝑜NN=1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
72 71 fveq2d Nω2𝑜NrecFN1styN=recFN1sty1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
73 72 adantr Nω2𝑜NyV×UrecFN1styN=recFN1sty1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
74 33 adantr Nω2𝑜NyV×UιoOn|2𝑜+𝑜o=Nω
75 df-1o 1𝑜=suc
76 75 fveq2i recFNy1𝑜=recFNysuc
77 rdgsuc OnrecFNysuc=FrecFNy
78 25 77 ax-mp recFNysuc=FrecFNy
79 opex NyV
80 79 rdg0 recFNy=Ny
81 80 fveq2i FrecFNy=FNy
82 76 78 81 3eqtri recFNy1𝑜=FNy
83 1 finxpreclem3 Nω2𝑜NyV×UN1sty=FNy
84 82 83 eqtr4id Nω2𝑜NyV×UrecFNy1𝑜=N1sty
85 84 fveq2d Nω2𝑜NyV×UFrecFNy1𝑜=FN1sty
86 2on0 2𝑜
87 nnlim 2𝑜ω¬Lim2𝑜
88 2 87 ax-mp ¬Lim2𝑜
89 rdgsucuni 2𝑜On2𝑜¬Lim2𝑜recFNy2𝑜=FrecFNy2𝑜
90 4 86 88 89 mp3an recFNy2𝑜=FrecFNy2𝑜
91 1oequni2o 1𝑜=2𝑜
92 91 fveq2i recFNy1𝑜=recFNy2𝑜
93 92 fveq2i FrecFNy1𝑜=FrecFNy2𝑜
94 90 93 eqtr4i recFNy2𝑜=FrecFNy1𝑜
95 75 fveq2i recFN1sty1𝑜=recFN1stysuc
96 rdgsuc OnrecFN1stysuc=FrecFN1sty
97 25 96 ax-mp recFN1stysuc=FrecFN1sty
98 opex N1styV
99 98 rdg0 recFN1sty=N1sty
100 99 fveq2i FrecFN1sty=FN1sty
101 95 97 100 3eqtri recFN1sty1𝑜=FN1sty
102 85 94 101 3eqtr4g Nω2𝑜NyV×UrecFNy2𝑜=recFN1sty1𝑜
103 1on 1𝑜On
104 rdgeqoa 2𝑜On1𝑜OnιoOn|2𝑜+𝑜o=NωrecFNy2𝑜=recFN1sty1𝑜recFNy2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=recFN1sty1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
105 4 103 104 mp3an12 ιoOn|2𝑜+𝑜o=NωrecFNy2𝑜=recFN1sty1𝑜recFNy2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=recFN1sty1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
106 74 102 105 sylc Nω2𝑜NyV×UrecFNy2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=recFN1sty1𝑜+𝑜ιoOn|2𝑜+𝑜o=N
107 20 fveq2d Nω2𝑜NrecFNy2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=recFNyN
108 107 adantr Nω2𝑜NyV×UrecFNy2𝑜+𝑜ιoOn|2𝑜+𝑜o=N=recFNyN
109 73 106 108 3eqtr2rd Nω2𝑜NyV×UrecFNyN=recFN1styN