Metamath Proof Explorer


Theorem fldextrspunfld

Description: The ring generated by the union of two field extensions is a field. Part of the proof of Proposition 5, Chapter 5, of BourbakiAlg2 p. 116. (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses fldextrspunfld.k K = L 𝑠 F
fldextrspunfld.i I = L 𝑠 G
fldextrspunfld.j J = L 𝑠 H
fldextrspunfld.2 φ L Field
fldextrspunfld.3 φ F SubDRing I
fldextrspunfld.4 φ F SubDRing J
fldextrspunfld.5 φ G SubDRing L
fldextrspunfld.6 φ H SubDRing L
fldextrspunfld.7 φ J .:. K 0
fldextrspunfld.n N = RingSpan L
fldextrspunfld.c C = N G H
fldextrspunfld.e E = L 𝑠 C
Assertion fldextrspunfld φ E Field

Proof

Step Hyp Ref Expression
1 fldextrspunfld.k K = L 𝑠 F
2 fldextrspunfld.i I = L 𝑠 G
3 fldextrspunfld.j J = L 𝑠 H
4 fldextrspunfld.2 φ L Field
5 fldextrspunfld.3 φ F SubDRing I
6 fldextrspunfld.4 φ F SubDRing J
7 fldextrspunfld.5 φ G SubDRing L
8 fldextrspunfld.6 φ H SubDRing L
9 fldextrspunfld.7 φ J .:. K 0
10 fldextrspunfld.n N = RingSpan L
11 fldextrspunfld.c C = N G H
12 fldextrspunfld.e E = L 𝑠 C
13 eqid Scalar subringAlg E G = Scalar subringAlg E G
14 4 flddrngd φ L DivRing
15 14 drngringd φ L Ring
16 eqidd φ Base L = Base L
17 eqid Base L = Base L
18 17 sdrgss G SubDRing L G Base L
19 7 18 syl φ G Base L
20 17 sdrgss H SubDRing L H Base L
21 8 20 syl φ H Base L
22 19 21 unssd φ G H Base L
23 10 a1i φ N = RingSpan L
24 11 a1i φ C = N G H
25 15 16 22 23 24 rgspncl φ C SubRing L
26 4 25 subrfld φ L 𝑠 C IDomn
27 12 26 eqeltrid φ E IDomn
28 27 idomcringd φ E CRing
29 sdrgsubrg G SubDRing L G SubRing L
30 7 29 syl φ G SubRing L
31 15 16 22 23 24 rgspnssid φ G H C
32 31 unssad φ G C
33 12 subsubrg C SubRing L G SubRing E G SubRing L G C
34 33 biimpar C SubRing L G SubRing L G C G SubRing E
35 25 30 32 34 syl12anc φ G SubRing E
36 eqid subringAlg E G = subringAlg E G
37 36 sraassa E CRing G SubRing E subringAlg E G AssAlg
38 28 35 37 syl2anc φ subringAlg E G AssAlg
39 eqid Base E = Base E
40 17 subrgss C SubRing L C Base L
41 25 40 syl φ C Base L
42 12 17 ressbas2 C Base L C = Base E
43 41 42 syl φ C = Base E
44 32 43 sseqtrd φ G Base E
45 36 39 27 44 sraidom φ subringAlg E G IDomn
46 ressabs C SubRing L G C L 𝑠 C 𝑠 G = L 𝑠 G
47 25 32 46 syl2anc φ L 𝑠 C 𝑠 G = L 𝑠 G
48 12 oveq1i E 𝑠 G = L 𝑠 C 𝑠 G
49 47 48 2 3eqtr4g φ E 𝑠 G = I
50 eqidd φ subringAlg E G = subringAlg E G
51 50 44 srasca φ E 𝑠 G = Scalar subringAlg E G
52 49 51 eqtr3d φ I = Scalar subringAlg E G
53 2 sdrgdrng G SubDRing L I DivRing
54 7 53 syl φ I DivRing
55 52 54 eqeltrrd φ Scalar subringAlg E G DivRing
56 36 sralmod G SubRing E subringAlg E G LMod
57 35 56 syl φ subringAlg E G LMod
58 13 islvec subringAlg E G LVec subringAlg E G LMod Scalar subringAlg E G DivRing
59 57 55 58 sylanbrc φ subringAlg E G LVec
60 dimcl subringAlg E G LVec dim subringAlg E G 0 *
61 59 60 syl φ dim subringAlg E G 0 *
62 1 2 3 4 5 6 7 8 9 10 11 12 fldextrspunlem1 φ dim subringAlg E G J .:. K
63 xnn0lenn0nn0 dim subringAlg E G 0 * J .:. K 0 dim subringAlg E G J .:. K dim subringAlg E G 0
64 61 9 62 63 syl3anc φ dim subringAlg E G 0
65 13 38 45 55 64 assafld φ subringAlg E G Field
66 50 44 srabase φ Base E = Base subringAlg E G
67 43 66 eqtrd φ C = Base subringAlg E G
68 50 44 sraaddg φ + E = + subringAlg E G
69 68 oveqdr φ x C y C x + E y = x + subringAlg E G y
70 50 44 sramulr φ E = subringAlg E G
71 70 oveqdr φ x C y C x E y = x subringAlg E G y
72 43 67 69 71 fldpropd φ E Field subringAlg E G Field
73 65 72 mpbird φ E Field