Metamath Proof Explorer


Theorem fmtno4prmfac

Description: If P was a (prime) factor of the fourth Fermat number less than the square root of the fourth Fermat number, it would be either 65 or 129 or 193. (Contributed by AV, 28-Jul-2021)

Ref Expression
Assertion fmtno4prmfac PPFermatNo4PFermatNo4P=65P=129P=193

Proof

Step Hyp Ref Expression
1 2z 2
2 4z 4
3 2re 2
4 4re 4
5 2lt4 2<4
6 3 4 5 ltleii 24
7 eluz2 422424
8 1 2 6 7 mpbir3an 42
9 fmtnoprmfac2 42PPFermatNo4kP=k24+2+1
10 8 9 mp3an1 PPFermatNo4kP=k24+2+1
11 elnnuz kk1
12 4nn 4
13 nnuz =1
14 12 13 eleqtri 41
15 fzouzsplit 411=1..^44
16 14 15 ax-mp 1=1..^44
17 16 eleq2i k1k1..^44
18 elun k1..^44k1..^4k4
19 fzo1to4tp 1..^4=123
20 19 eleq2i k1..^4k123
21 vex kV
22 21 eltp k123k=1k=2k=3
23 20 22 bitri k1..^4k=1k=2k=3
24 23 orbi1i k1..^4k4k=1k=2k=3k4
25 18 24 bitri k1..^44k=1k=2k=3k4
26 11 17 25 3bitri kk=1k=2k=3k4
27 4p2e6 4+2=6
28 27 oveq2i 24+2=26
29 2exp6 26=64
30 28 29 eqtri 24+2=64
31 30 oveq2i k24+2=k64
32 31 oveq1i k24+2+1=k64+1
33 32 eqeq2i P=k24+2+1P=k64+1
34 simpl P=k64+1k=1P=k64+1
35 oveq1 k=1k64=164
36 6nn0 60
37 4nn0 40
38 36 37 deccl 640
39 38 nn0cni 64
40 39 mullidi 164=64
41 35 40 eqtrdi k=1k64=64
42 41 oveq1d k=1k64+1=64+1
43 4p1e5 4+1=5
44 eqid 64=64
45 36 37 43 44 decsuc 64+1=65
46 42 45 eqtrdi k=1k64+1=65
47 46 adantl P=k64+1k=1k64+1=65
48 34 47 eqtrd P=k64+1k=1P=65
49 48 ex P=k64+1k=1P=65
50 simpl P=k64+1k=2P=k64+1
51 oveq1 k=2k64=264
52 2nn0 20
53 6cn 6
54 2cn 2
55 6t2e12 62=12
56 53 54 55 mulcomli 26=12
57 56 eqcomi 12=26
58 4cn 4
59 4t2e8 42=8
60 58 54 59 mulcomli 24=8
61 60 eqcomi 8=24
62 36 37 52 57 61 decmul10add 264=120+8
63 51 62 eqtrdi k=2k64=120+8
64 63 oveq1d k=2k64+1=120+8+1
65 1nn0 10
66 65 52 deccl 120
67 8nn0 80
68 8p1e9 8+1=9
69 0nn0 00
70 eqid 120=120
71 8cn 8
72 71 addlidi 0+8=8
73 66 69 67 70 72 decaddi 120+8=128
74 66 67 68 73 decsuc 120+8+1=129
75 64 74 eqtrdi k=2k64+1=129
76 75 adantl P=k64+1k=2k64+1=129
77 50 76 eqtrd P=k64+1k=2P=129
78 77 ex P=k64+1k=2P=129
79 simpl P=k64+1k=3P=k64+1
80 oveq1 k=3k64=364
81 3nn0 30
82 6t3e18 63=18
83 3cn 3
84 53 83 mulcomi 63=36
85 82 84 eqtr3i 18=36
86 4t3e12 43=12
87 58 83 mulcomi 43=34
88 86 87 eqtr3i 12=34
89 36 37 81 85 88 decmul10add 364=180+12
90 80 89 eqtrdi k=3k64=180+12
91 90 oveq1d k=3k64+1=180+12+1
92 9nn0 90
93 65 92 deccl 190
94 2p1e3 2+1=3
95 65 67 deccl 180
96 eqid 180=180
97 eqid 12=12
98 eqid 18=18
99 65 67 68 98 decsuc 18+1=19
100 54 addlidi 0+2=2
101 95 69 65 52 96 97 99 100 decadd 180+12=192
102 93 52 94 101 decsuc 180+12+1=193
103 91 102 eqtrdi k=3k64+1=193
104 103 adantl P=k64+1k=3k64+1=193
105 79 104 eqtrd P=k64+1k=3P=193
106 105 ex P=k64+1k=3P=193
107 49 78 106 3orim123d P=k64+1k=1k=2k=3P=65P=129P=193
108 107 a1i PFermatNo4P=k64+1k=1k=2k=3P=65P=129P=193
109 108 com13 k=1k=2k=3P=k64+1PFermatNo4P=65P=129P=193
110 fmtno4sqrt FermatNo4=256
111 110 breq2i PFermatNo4P256
112 breq1 P=k64+1P256k64+1256
113 112 adantl k4P=k64+1P256k64+1256
114 eluz2 k44k4k
115 6t4e24 64=24
116 53 58 115 mulcomli 46=24
117 52 37 43 116 decsuc 46+1=25
118 4t4e16 44=16
119 37 36 37 44 36 65 117 118 decmul2c 464=256
120 zre kk
121 38 nn0rei 64
122 36 12 decnncl 64
123 122 nngt0i 0<64
124 121 123 pm3.2i 640<64
125 124 a1i k640<64
126 lemul1 4k640<644k464k64
127 4 120 125 126 mp3an2i k4k464k64
128 127 biimpa k4k464k64
129 119 128 eqbrtrrid k4k256k64
130 5nn0 50
131 52 130 deccl 250
132 131 36 deccl 2560
133 132 nn0zi 256
134 id kk
135 38 nn0zi 64
136 135 a1i k64
137 134 136 zmulcld kk64
138 137 adantr k4kk64
139 zleltp1 256k64256k64256<k64+1
140 133 138 139 sylancr k4k256k64256<k64+1
141 129 140 mpbid k4k256<k64+1
142 141 3adant1 4k4k256<k64+1
143 114 142 sylbi k4256<k64+1
144 132 nn0rei 256
145 144 a1i k4256
146 eluzelre k4k
147 121 a1i k464
148 146 147 remulcld k4k64
149 peano2re k64k64+1
150 148 149 syl k4k64+1
151 145 150 ltnled k4256<k64+1¬k64+1256
152 143 151 mpbid k4¬k64+1256
153 152 pm2.21d k4k64+1256P=65P=129P=193
154 153 adantr k4P=k64+1k64+1256P=65P=129P=193
155 113 154 sylbid k4P=k64+1P256P=65P=129P=193
156 111 155 biimtrid k4P=k64+1PFermatNo4P=65P=129P=193
157 156 ex k4P=k64+1PFermatNo4P=65P=129P=193
158 109 157 jaoi k=1k=2k=3k4P=k64+1PFermatNo4P=65P=129P=193
159 158 adantr k=1k=2k=3k4PPFermatNo4P=k64+1PFermatNo4P=65P=129P=193
160 33 159 biimtrid k=1k=2k=3k4PPFermatNo4P=k24+2+1PFermatNo4P=65P=129P=193
161 160 ex k=1k=2k=3k4PPFermatNo4P=k24+2+1PFermatNo4P=65P=129P=193
162 26 161 sylbi kPPFermatNo4P=k24+2+1PFermatNo4P=65P=129P=193
163 162 com12 PPFermatNo4kP=k24+2+1PFermatNo4P=65P=129P=193
164 163 rexlimdv PPFermatNo4kP=k24+2+1PFermatNo4P=65P=129P=193
165 10 164 mpd PPFermatNo4PFermatNo4P=65P=129P=193
166 165 3impia PPFermatNo4PFermatNo4P=65P=129P=193