Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
|
2 |
1
|
adantr |
|
3 |
|
eluzge2nn0 |
|
4 |
|
fmtnoodd |
|
5 |
3 4
|
syl |
|
6 |
5
|
adantl |
|
7 |
6
|
pm2.21d |
|
8 |
2 7
|
sylbid |
|
9 |
8
|
a1d |
|
10 |
9
|
ex |
|
11 |
10
|
3impd |
|
12 |
|
simpr1 |
|
13 |
|
neqne |
|
14 |
13
|
anim2i |
|
15 |
|
eldifsn |
|
16 |
14 15
|
sylibr |
|
17 |
16
|
ex |
|
18 |
17
|
3ad2ant2 |
|
19 |
18
|
impcom |
|
20 |
|
simpr3 |
|
21 |
|
fmtnoprmfac2lem1 |
|
22 |
12 19 20 21
|
syl3anc |
|
23 |
|
simpl |
|
24 |
|
2nn |
|
25 |
24
|
a1i |
|
26 |
|
oddprm |
|
27 |
16 26
|
syl |
|
28 |
27
|
nnnn0d |
|
29 |
25 28
|
nnexpcld |
|
30 |
29
|
nnzd |
|
31 |
23 30
|
jca |
|
32 |
31
|
ex |
|
33 |
32
|
3ad2ant2 |
|
34 |
33
|
impcom |
|
35 |
|
modprm1div |
|
36 |
34 35
|
syl |
|
37 |
|
prmnn |
|
38 |
37
|
adantr |
|
39 |
|
2z |
|
40 |
39
|
a1i |
|
41 |
13
|
necomd |
|
42 |
41
|
adantl |
|
43 |
|
2prm |
|
44 |
43
|
a1i |
|
45 |
44
|
anim2i |
|
46 |
45
|
ancomd |
|
47 |
|
prmrp |
|
48 |
46 47
|
syl |
|
49 |
42 48
|
mpbird |
|
50 |
38 40 49
|
3jca |
|
51 |
50 28
|
jca |
|
52 |
51
|
ex |
|
53 |
52
|
3ad2ant2 |
|
54 |
53
|
impcom |
|
55 |
|
odzdvds |
|
56 |
54 55
|
syl |
|
57 |
|
eluz2nn |
|
58 |
57
|
3ad2ant1 |
|
59 |
58
|
adantl |
|
60 |
|
fmtnoprmfac1lem |
|
61 |
59 19 20 60
|
syl3anc |
|
62 |
|
breq1 |
|
63 |
62
|
adantl |
|
64 |
24
|
a1i |
|
65 |
|
peano2nn |
|
66 |
57 65
|
syl |
|
67 |
66
|
nnnn0d |
|
68 |
64 67
|
nnexpcld |
|
69 |
|
nndivides |
|
70 |
68 27 69
|
syl2an |
|
71 |
|
eqcom |
|
72 |
71
|
a1i |
|
73 |
37
|
nncnd |
|
74 |
|
peano2cnm |
|
75 |
73 74
|
syl |
|
76 |
75
|
adantl |
|
77 |
76
|
adantr |
|
78 |
|
simpr |
|
79 |
68
|
ad2antrr |
|
80 |
78 79
|
nnmulcld |
|
81 |
80
|
nncnd |
|
82 |
|
2cnne0 |
|
83 |
82
|
a1i |
|
84 |
|
divmul3 |
|
85 |
77 81 83 84
|
syl3anc |
|
86 |
|
nncn |
|
87 |
86
|
adantl |
|
88 |
68
|
nncnd |
|
89 |
88
|
ad2antrr |
|
90 |
|
2cnd |
|
91 |
87 89 90
|
mulassd |
|
92 |
|
2cnd |
|
93 |
65
|
nnnn0d |
|
94 |
92 93
|
expp1d |
|
95 |
|
nncn |
|
96 |
|
add1p1 |
|
97 |
95 96
|
syl |
|
98 |
97
|
oveq2d |
|
99 |
94 98
|
eqtr3d |
|
100 |
57 99
|
syl |
|
101 |
100
|
ad2antrr |
|
102 |
101
|
oveq2d |
|
103 |
91 102
|
eqtrd |
|
104 |
103
|
eqeq2d |
|
105 |
73
|
adantl |
|
106 |
105
|
adantr |
|
107 |
|
1cnd |
|
108 |
|
id |
|
109 |
24
|
a1i |
|
110 |
108 109
|
nnaddcld |
|
111 |
110
|
nnnn0d |
|
112 |
57 111
|
syl |
|
113 |
64 112
|
nnexpcld |
|
114 |
113
|
nncnd |
|
115 |
114
|
ad2antrr |
|
116 |
87 115
|
mulcld |
|
117 |
106 107 116
|
subadd2d |
|
118 |
|
eqcom |
|
119 |
118
|
a1i |
|
120 |
104 117 119
|
3bitrd |
|
121 |
72 85 120
|
3bitrd |
|
122 |
121
|
rexbidva |
|
123 |
122
|
biimpd |
|
124 |
123
|
adantrr |
|
125 |
70 124
|
sylbid |
|
126 |
125
|
expr |
|
127 |
126
|
3adant3 |
|
128 |
127
|
impcom |
|
129 |
128
|
adantr |
|
130 |
63 129
|
sylbid |
|
131 |
130
|
ex |
|
132 |
61 131
|
mpd |
|
133 |
56 132
|
sylbid |
|
134 |
36 133
|
sylbid |
|
135 |
22 134
|
mpd |
|
136 |
135
|
ex |
|
137 |
11 136
|
pm2.61i |
|