Metamath Proof Explorer


Theorem fourierdlem26

Description: Periodic image of a point Y that's in the period that begins with the point X . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem26.1 φA
fourierdlem26.2 φB
fourierdlem26.3 φA<B
fourierdlem26.4 T=BA
fourierdlem26.5 E=xx+BxTT
fourierdlem26.6 φX
fourierdlem26.7 φEX=B
fourierdlem26.8 φYXX+T
Assertion fourierdlem26 φEY=A+Y-X

Proof

Step Hyp Ref Expression
1 fourierdlem26.1 φA
2 fourierdlem26.2 φB
3 fourierdlem26.3 φA<B
4 fourierdlem26.4 T=BA
5 fourierdlem26.5 E=xx+BxTT
6 fourierdlem26.6 φX
7 fourierdlem26.7 φEX=B
8 fourierdlem26.8 φYXX+T
9 5 a1i φE=xx+BxTT
10 simpr φx=Yx=Y
11 10 oveq2d φx=YBx=BY
12 11 oveq1d φx=YBxT=BYT
13 12 fveq2d φx=YBxT=BYT
14 13 oveq1d φx=YBxTT=BYTT
15 10 14 oveq12d φx=Yx+BxTT=Y+BYTT
16 6 rexrd φX*
17 2 1 resubcld φBA
18 4 17 eqeltrid φT
19 6 18 readdcld φX+T
20 elioc2 X*X+TYXX+TYX<YYX+T
21 16 19 20 syl2anc φYXX+TYX<YYX+T
22 8 21 mpbid φYX<YYX+T
23 22 simp1d φY
24 2 23 resubcld φBY
25 1 2 posdifd φA<B0<BA
26 3 25 mpbid φ0<BA
27 26 4 breqtrrdi φ0<T
28 27 gt0ne0d φT0
29 24 18 28 redivcld φBYT
30 29 flcld φBYT
31 30 zred φBYT
32 31 18 remulcld φBYTT
33 23 32 readdcld φY+BYTT
34 9 15 23 33 fvmptd φEY=Y+BYTT
35 6 recnd φX
36 23 recnd φY
37 35 36 pncan3d φX+Y-X=Y
38 37 eqcomd φY=X+Y-X
39 38 oveq2d φBY=BX+Y-X
40 2 recnd φB
41 36 35 subcld φYX
42 40 35 41 subsub4d φB-X-YX=BX+Y-X
43 39 42 eqtr4d φBY=B-X-YX
44 43 oveq1d φBYT=B-X-YXT
45 2 6 resubcld φBX
46 45 recnd φBX
47 18 recnd φT
48 46 41 47 28 divsubdird φB-X-YXT=BXTYXT
49 41 47 28 divnegd φYXT=YXT
50 36 35 negsubdi2d φYX=XY
51 50 oveq1d φYXT=XYT
52 49 51 eqtrd φYXT=XYT
53 52 oveq2d φBXT+YXT=BXT+XYT
54 45 18 28 redivcld φBXT
55 54 recnd φBXT
56 41 47 28 divcld φYXT
57 55 56 negsubd φBXT+YXT=BXTYXT
58 1cnd φ1
59 55 58 npcand φBXT-1+1=BXT
60 59 eqcomd φBXT=BXT-1+1
61 60 oveq1d φBXT+XYT=BXT1+1+XYT
62 55 58 subcld φBXT1
63 35 36 subcld φXY
64 63 47 28 divcld φXYT
65 62 58 64 addassd φBXT1+1+XYT=BXT1+1+XYT
66 61 65 eqtrd φBXT+XYT=BXT1+1+XYT
67 53 57 66 3eqtr3d φBXTYXT=BXT1+1+XYT
68 44 48 67 3eqtrd φBYT=BXT1+1+XYT
69 68 fveq2d φBYT=BXT1+1+XYT
70 6 23 resubcld φXY
71 18 70 readdcld φT+X-Y
72 18 27 elrpd φT+
73 35 47 addcomd φX+T=T+X
74 73 oveq2d φXX+T=XT+X
75 8 74 eleqtrd φYXT+X
76 18 6 readdcld φT+X
77 elioc2 X*T+XYXT+XYX<YYT+X
78 16 76 77 syl2anc φYXT+XYX<YYT+X
79 75 78 mpbid φYX<YYT+X
80 79 simp3d φYT+X
81 23 6 18 lesubaddd φYXTYT+X
82 80 81 mpbird φYXT
83 23 6 resubcld φYX
84 18 83 subge0d φ0TYXYXT
85 82 84 mpbird φ0TYX
86 47 36 35 subsub2d φTYX=T+X-Y
87 85 86 breqtrd φ0T+X-Y
88 71 72 87 divge0d φ0T+X-YT
89 47 63 47 28 divdird φT+X-YT=TT+XYT
90 47 28 dividd φTT=1
91 90 eqcomd φ1=TT
92 91 oveq1d φ1+XYT=TT+XYT
93 89 92 eqtr4d φT+X-YT=1+XYT
94 88 93 breqtrd φ01+XYT
95 22 simp2d φX<Y
96 6 23 sublt0d φXY<0X<Y
97 95 96 mpbird φXY<0
98 70 72 97 divlt0gt0d φXYT<0
99 70 18 28 redivcld φXYT
100 1red φ1
101 ltaddneg XYT1XYT<01+XYT<1
102 99 100 101 syl2anc φXYT<01+XYT<1
103 98 102 mpbid φ1+XYT<1
104 54 flcld φBXT
105 104 zcnd φBXT
106 105 47 mulcld φBXTT
107 35 106 pncan2d φX+BXTT-X=BXTT
108 107 eqcomd φBXTT=X+BXTT-X
109 108 oveq1d φBXTTT=X+BXTT-XT
110 105 47 28 divcan4d φBXTTT=BXT
111 id x=Xx=X
112 oveq2 x=XBx=BX
113 112 oveq1d x=XBxT=BXT
114 113 fveq2d x=XBxT=BXT
115 114 oveq1d x=XBxTT=BXTT
116 111 115 oveq12d x=Xx+BxTT=X+BXTT
117 116 adantl φx=Xx+BxTT=X+BXTT
118 reflcl BXTBXT
119 54 118 syl φBXT
120 119 18 remulcld φBXTT
121 6 120 readdcld φX+BXTT
122 9 117 6 121 fvmptd φEX=X+BXTT
123 122 eqcomd φX+BXTT=EX
124 123 oveq1d φX+BXTT-X=EXX
125 124 oveq1d φX+BXTT-XT=EXXT
126 7 oveq1d φEXX=BX
127 126 oveq1d φEXXT=BXT
128 125 127 eqtrd φX+BXTT-XT=BXT
129 109 110 128 3eqtr3d φBXT=BXT
130 129 104 eqeltrrd φBXT
131 1zzd φ1
132 130 131 zsubcld φBXT1
133 100 99 readdcld φ1+XYT
134 flbi2 BXT11+XYTBXT1+1+XYT=BXT101+XYT1+XYT<1
135 132 133 134 syl2anc φBXT1+1+XYT=BXT101+XYT1+XYT<1
136 94 103 135 mpbir2and φBXT1+1+XYT=BXT1
137 129 eqcomd φBXT=BXT
138 137 oveq1d φBXT1=BXT1
139 69 136 138 3eqtrd φBYT=BXT1
140 139 oveq1d φBYTT=BXT1T
141 140 oveq2d φY+BYTT=Y+BXT1T
142 38 oveq1d φY+BXT1T=X+YX+BXT1T
143 105 58 47 subdird φBXT1T=BXTT1T
144 143 oveq2d φX+YX+BXT1T=X+YX+BXTT1T
145 35 41 addcld φX+Y-X
146 58 47 mulcld φ1T
147 145 106 146 addsubassd φX+Y-X+BXTT-1T=X+YX+BXTT1T
148 147 eqcomd φX+YX+BXTT1T=X+Y-X+BXTT-1T
149 35 41 106 add32d φX+YX+BXTT=X+BXTT+YX
150 149 oveq1d φX+Y-X+BXTT-1T=X+BXTT+YX-1T
151 123 oveq1d φX+BXTT+YX=EX+Y-X
152 47 mullidd φ1T=T
153 151 152 oveq12d φX+BXTT+YX-1T=EX+YX-T
154 7 2 eqeltrd φEX
155 154 recnd φEX
156 155 41 47 addsubd φEX+YX-T=EXT+Y-X
157 7 oveq1d φEXT=BT
158 4 a1i φT=BA
159 158 oveq2d φBT=BBA
160 1 recnd φA
161 40 160 nncand φBBA=A
162 157 159 161 3eqtrd φEXT=A
163 162 oveq1d φEXT+Y-X=A+Y-X
164 156 163 eqtrd φEX+YX-T=A+Y-X
165 150 153 164 3eqtrd φX+Y-X+BXTT-1T=A+Y-X
166 144 148 165 3eqtrd φX+YX+BXT1T=A+Y-X
167 142 166 eqtrd φY+BXT1T=A+Y-X
168 34 141 167 3eqtrd φEY=A+Y-X