Metamath Proof Explorer


Theorem fourierdlem52

Description: d16:d17,d18:jca |- ( ph -> ( ( S 0 ) <_ A /\ A <_ ( S 0 ) ) ) . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem52.tf φ T Fin
fourierdlem52.n N = T 1
fourierdlem52.s S = ι f | f Isom < , < 0 N T
fourierdlem52.a φ A
fourierdlem52.b φ B
fourierdlem52.t φ T A B
fourierdlem52.at φ A T
fourierdlem52.bt φ B T
Assertion fourierdlem52 φ S : 0 N A B S 0 = A S N = B

Proof

Step Hyp Ref Expression
1 fourierdlem52.tf φ T Fin
2 fourierdlem52.n N = T 1
3 fourierdlem52.s S = ι f | f Isom < , < 0 N T
4 fourierdlem52.a φ A
5 fourierdlem52.b φ B
6 fourierdlem52.t φ T A B
7 fourierdlem52.at φ A T
8 fourierdlem52.bt φ B T
9 4 5 iccssred φ A B
10 6 9 sstrd φ T
11 1 10 3 2 fourierdlem36 φ S Isom < , < 0 N T
12 isof1o S Isom < , < 0 N T S : 0 N 1-1 onto T
13 f1of S : 0 N 1-1 onto T S : 0 N T
14 11 12 13 3syl φ S : 0 N T
15 14 6 fssd φ S : 0 N A B
16 f1ofo S : 0 N 1-1 onto T S : 0 N onto T
17 11 12 16 3syl φ S : 0 N onto T
18 foelrn S : 0 N onto T A T j 0 N A = S j
19 17 7 18 syl2anc φ j 0 N A = S j
20 elfzle1 j 0 N 0 j
21 20 adantl φ j 0 N 0 j
22 11 adantr φ j 0 N S Isom < , < 0 N T
23 ressxr *
24 10 23 sstrdi φ T *
25 24 adantr φ j 0 N T *
26 fzssz 0 N
27 zssre
28 27 23 sstri *
29 26 28 sstri 0 N *
30 25 29 jctil φ j 0 N 0 N * T *
31 hashcl T Fin T 0
32 1 31 syl φ T 0
33 7 ne0d φ T
34 hashge1 T Fin T 1 T
35 1 33 34 syl2anc φ 1 T
36 elnnnn0c T T 0 1 T
37 32 35 36 sylanbrc φ T
38 nnm1nn0 T T 1 0
39 37 38 syl φ T 1 0
40 2 39 eqeltrid φ N 0
41 nn0uz 0 = 0
42 40 41 eleqtrdi φ N 0
43 eluzfz1 N 0 0 0 N
44 42 43 syl φ 0 0 N
45 44 anim1i φ j 0 N 0 0 N j 0 N
46 leisorel S Isom < , < 0 N T 0 N * T * 0 0 N j 0 N 0 j S 0 S j
47 22 30 45 46 syl3anc φ j 0 N 0 j S 0 S j
48 21 47 mpbid φ j 0 N S 0 S j
49 48 3adant3 φ j 0 N A = S j S 0 S j
50 eqcom A = S j S j = A
51 50 biimpi A = S j S j = A
52 51 3ad2ant3 φ j 0 N A = S j S j = A
53 49 52 breqtrd φ j 0 N A = S j S 0 A
54 53 rexlimdv3a φ j 0 N A = S j S 0 A
55 19 54 mpd φ S 0 A
56 4 rexrd φ A *
57 5 rexrd φ B *
58 15 44 ffvelrnd φ S 0 A B
59 iccgelb A * B * S 0 A B A S 0
60 56 57 58 59 syl3anc φ A S 0
61 9 58 sseldd φ S 0
62 61 4 letri3d φ S 0 = A S 0 A A S 0
63 55 60 62 mpbir2and φ S 0 = A
64 eluzfz2 N 0 N 0 N
65 42 64 syl φ N 0 N
66 15 65 ffvelrnd φ S N A B
67 iccleub A * B * S N A B S N B
68 56 57 66 67 syl3anc φ S N B
69 foelrn S : 0 N onto T B T j 0 N B = S j
70 17 8 69 syl2anc φ j 0 N B = S j
71 simp3 φ j 0 N B = S j B = S j
72 elfzle2 j 0 N j N
73 72 3ad2ant2 φ j 0 N B = S j j N
74 11 3ad2ant1 φ j 0 N B = S j S Isom < , < 0 N T
75 30 3adant3 φ j 0 N B = S j 0 N * T *
76 simp2 φ j 0 N B = S j j 0 N
77 65 3ad2ant1 φ j 0 N B = S j N 0 N
78 leisorel S Isom < , < 0 N T 0 N * T * j 0 N N 0 N j N S j S N
79 74 75 76 77 78 syl112anc φ j 0 N B = S j j N S j S N
80 73 79 mpbid φ j 0 N B = S j S j S N
81 71 80 eqbrtrd φ j 0 N B = S j B S N
82 81 rexlimdv3a φ j 0 N B = S j B S N
83 70 82 mpd φ B S N
84 9 66 sseldd φ S N
85 84 5 letri3d φ S N = B S N B B S N
86 68 83 85 mpbir2and φ S N = B
87 15 63 86 jca31 φ S : 0 N A B S 0 = A S N = B